
NAVAL POSTGRADUATE SCHOOLj,,
Monterey, California

00 • .~DTIC

S LECT
E

IFEB 2 01992

THESIS
COMPUTER SOFTWARE PROJECT MANAGEMENT: AN

INTRODUCTION

by

Samuel Matthew Liberto

June, 1991

Thesis Advisor: Donald A. Lacer

Approved for public release; distribution is unlimited

92-03976

92 2 i4

LU nciassineo
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

39

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, andZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (CTy, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS
Program Element No Project No Task No Work Unit Accession

Number

11. TITLE (Include Security Classification)

Computer Software Project Management: An Introduction

12. PERSONAL AUTHOR(S) Samuel M. Liberto

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master's Thesis From To June 1991 117
16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Computer Software Management, Software Management, Classical Software Development
Life Cycle, Planning, Organizing, Directing, Controlling, CPM, PERT, COCOMO,
Leadership Style, CASE, Prototyping, Risk Management, Software Engineering

19 ABSTRACT (continue on reverse if necessary and identify by block number)

This thesis addresses the general princ,ples of computer software project management. The
main objective is to aid perspective software project managers in dealing with the development
and management ofsoftware poects. The definition of the classical software development life
cycle is given. The compnent include system engineering, analysis, design, coding, testing,
and maintenance. The thesis contains a description of the reasons why many software projects
have cost overruns and late schedules. The variability of requiremenfs and software complexity
are two factors. Proper project management is one remedy to project cost overruns and late
schedules. The components of software project management are planning organizing, directing,
and controlling. Many tables of comparisons and techniques for aiding software project
management are given. State of the art software development techniques are discussed. Finally,
a checklist to aid software managers when developing software is provided.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
El UNCLAsSIFIEDIUNLIMITED 3 SAME AS REPOT (3 oTICUsENS Unclassified

22a, NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
Donald A. Lacer (408) 646-3446 CC/La
DD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

Computer Software Project Management: An Introduction

by

Samuel M. Liberto
Captain, United States Air Force

B.S., State University College of Buffalo 1982
M.E.A., George Washington University 1989

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY

(Command, Control, and Communications)

from the

NAVAL POSTGRADUATE SCHOOL
June 1991

Author: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Samuel M. Liberto
Approved by: td / 6'

Donald A. Lacer, Thesis Advisor

-71 z l
TarekA bdel-HaridS cond Reader

Command, Con ,andl mmunications Academic Group

ii

ABSTRACT

This thesis addresses the general principles of computer

software project management. The main objective is to aid

perspective software project managers in dealing with the

development and management of software projects. The

definition of the classical software development life cycle is

given. The components include system engineering, analysis,

design, coding, testing, and maintenance. The thesis contains

a description of the reasons why many software projects have

cost overruns and late schedules. The variability of

requirements and software complexity are two factors. Proper

project management is one remedy to project cost overruns and

late schedules. The components of software project

management are planning, organizing, directing, and

controlling. Many tables of comparisons and techniques for

aiding software project management are given. State of the

art software development techniques are discussed. Finally,

a checklist to aid software managers when developing software

is provided.

Accession Fcr

NTIS GRA&I
DTIC TAB 0Unannounced 0

i - ; -" /Jutifi.cation.

By - -
Dst;butlon/

jAvailabiiity Ct&O-

iDietAvail &i/.
Dist pt C i.

TABLE OF CONTENTS

I. BACKGROUND & INTRODUCTION 1

A. OBJECTIVE 1

B. OVERVIEW 1

C. HISTORY OF THE COMPUTER 3

D. SOFTWARE BACKGROUND 7

E. SIGNIFICANCE OF COMPUTERS AND THEIR SOFTWARE 8

II. EXAMINATION OF SOFTWARE PROBLEMS 10

A. GENERAL SOFTWARE PROBLEMS 10

1. Estimating Size 10

2. Variability of Requirements 11

3. Support Tools 11

4. Lack of Historical Database 12

5. Difference in Personnel 12

6. Hybrids 12

7. Complex Software 13

8. Art/Abstract (Not Physical) 13

9. No Reusable Software 13

10. Programmers are Very Optimistic 14

iv

B. MILITARY SOFTWARE PROBLEMS 14

1. Life of Project 14

2. Embedded 15

3. Real Time Critical 15

4. Life-Critical 15

5. Facing Intelligent Adversaries 15

III. SOFTWARE LIFE CYCLE DEVELOPMENT 17

A. CLASSICAL SOFTWARE LIFE CYCLE DEVELOPMENT . . 17

1. Basic Software Systems Development

Principles 17

2. SYSTEM SOFTWARE DEVELOPMENT LIFE CYCLE . . 18

a. System Engineering 19

b. Analysis 19

c. System Design 21

d. Code 22

e. Test 22

f. Maintenance 23

B. MILITARY SOFTWARE DEVELOPMENT PROCESS 23

1. Department of Defense Standard 2167A

(DOD-STD-2167A) 24

2. Comparison of Classical Software Life

Cycle Development Versus Military

Software Development 24

v

IV. SOFTWARE PROJECT MANAGEMENT 30

A. INTRODUCTION 30

B. PLANNING 32

1. Set Objectives and Goals 33

2. Develop Strategies 33

3. Develop Policies 33

4. Determine Courses of Action 34

5. Scheduling 34

a. Milestone Chart 34

b. Gantt Chart 35

c. Full Wall Scheduling 35

d. CPM and PERT 36

6. Cost Estimation 44

a. Algorithmic Models 44

b. Expert Judgement 44

c. Analogy 44

d. Price-to-Win 44

e. Top-Down 45

f. Bottom-Up 45

g. COCOMO 47

7. Set Procedures and Rules 51

8. Develop Programs 51

9. Forecast Future Situations 51

10. Prepare Budgets 52

11. Document Project Plans 52

vi

C. ORGANIZING 53

1. Types of Organizations 53

a. Functional Organizations 53

b. Project Organizations 55

c. Matrix Organizations 56

2. Identify and Group Required Tasks 58

3. Select and Establish Organizational

Structures 59

4. Create Organizational Positions 59

5. Define Responsibilities and Authority . . 60

6. Establish Position Qualifications 60

7. Staff Positions 61

8. Document Organizational Structures 61

D. DIRECTING 62

1. Provide Leadership 62

a. Telling Situational Leadership Style 67

b. Selling Situational Leadership Style 68

c. Participating Situational Leadership

Style 68

d. Delegating Situational Leadership Style 69

2. Supervise Personnel 69

3. Delegate Authority 69

4. Motivate Personnel 70

5. Resolve Conflicts 72

6. Manage Changes 72

7. Document Directing Decisions 73

vii

E. CONTROLLING 73

1. Develop Standards of Performance 76

2. Establish Monitoring Techniques and Reporting

Systems 77

3. Measure Results 78

4. Initiate Corrective Actions 79

5. Reward and Discipline 79

6. Document Controlling Methods 80

V. STATE OF THE ART SOFTWARE DEVELOPMENT TECHNIQUES 81

A. INTRODUCTION 81

B. IMPROVEMENTS TO THE SOFTWARE LIFE CYCLE

DEVELOPMENT 81

1. Computer Aided Software Engineering 82

a. Diagramming Tools 82

b. Centralized Information Repository 82

c. Interface Generators 83

d. Code Generators 83

e. Project Software Management Tools 83

f. Integrating the Five CASE Components 84

2. Software Prototyping 85

a. Definition of Prototyping 85

b. Rapid Prototyping 86

viii

C. IMPROVEMENTS TO THE MANAGEMENT OF SOFTWARE

DEVELOPMENT.......................88

1 . Software Engineering Approach..........88

a. Software Development.............88

b. Project Management..............89

c. Software Metrics...............89

d. .3oftware Maintenance.............91

2. Risk Management.................92

a. Risk identification.............92

b. Risk Analysis................94

c. Risk Prioritization.............94

d. Risk Management Planning 94

e. Risk Resolution...............94

f. Risk Monitoring...............95

3. New Software Acquisition Methodology For

military.....................95

VI. SUMMARY AND CONCLUSIONS/RECOMMENDATIONS........98

A. SUMM4ARY 98

B. CONCLUSIONS/RECOMMENDATIONS.............99

1. General.....................99

2. Primary Importance of Software Development . 99

a. Keys to System Engineering and Analysis

Design................. ..

ix

Primary Importance of Software Management 99

a. Keys to Planning 100

b. Keys to Controlling 100

4. Overlooked Aspect of Software Management . . 00

a. Keys to Directing 101

5. Checklist to Aid Software Management 101

LIST OF REFERENCES 104

INITIAL DISTRIBUTION LIST 106

x

I. BACKGROUND & INTRODUCTION

A. OBJECTIVE

The primary objective of this thesis is to act as an aid

to program managers dealing with the development and

management of computer software for the United States Air

Force. The scope, or level, at which the thesis will be

written is for program managers who are not computer experts

or do not have much experience in the field. Therefore, the

thesis will act as a "lessons learned" and a "how to paper".

B. OVERVIEW

This chapter consists of a description of the background

of computer hardware and software development. A

chronological history of events will show the critical

discoveries and developments leading to the computer age of

today. Finally, the importance and the extent of the use of

software will be covered.

Chapter II will examine the inherent common problems and

difficulties associated with software development in the

civilian world as well in the military world. The two main

1

concerns researched pertain to cost and schedule over-runs.

The chapter will explore why software is hard to develop and

manage, and will address issues and problems that exist in

software development.

Chapter III will address the classical software life cycle

and military software development. Each topic will be

described and explained. Next, comparisons of the two will be

made.

Chapter IV will discuss software management techniques, to

help allow completion of software on schedule and cost. This

chapter will discuss tools that are necessary to preform

project management for developing software, i.e., planning,

organizing, directing, and controlling.

Chapter V will look at state of the art advances in

software techniques to aid the software developer and software

project manager. The advances are broken down into two major

areas. The areas for improvements of software development and

software project management will be described.

Chapter VI will consist of a summary section and a section

on conclusions/recommendations. The summary section will re-

emphasize key issues, while the conclusions/recommendations

section will cover the results of this research in management

of software development.

2

C. HISTORY OF THE COMPUTER

This section will cover a brief history of computer

software and will discuss the importance of software today in

the military and the civilian world. However, before software

alone can be addressed, the whole or total processing system

(the computer) must be covered. Finally, the importance and

relationship of software to the computer will be discussed.

An appropriate definition taken from the communications

standard dictionary of a computer is as follows:

A device capable of accepting and processing data and
supplying results. It usually consists of input, output,
storage, arithmetic, logic, and control units. (Weik,
1983, p. 174)

In general terms, hardware, software, and firmware are the

components of a computer. The hardware is the physical

equipment associated with the computer (i.e., Central

Processing Unit (CPU), keyboard, and the monitor). The

software is the non-physical entity that directs the computer

what to do (i.e., written lines of codes called programs,

routines, or compilers depending on their function). The

firmware is basically software written onto hardware (i.e.,

Electronically Programmable Read Only Memory (EPROM)).

(Stevens, 1989)

3

The history of the computer can be traced in the following

key events (Stevens, 1989):

o 1617: The invention of the sliderule.

o 1642: The mechanical calculator using wheels and gears is
invented and can perform addition and subtraction.

9 1671: Improvements to the mechanical calculator are made
to support multiplication and division.

& 1835: Charles Babbage invents the analytical engine,
which has all the functions of a modern computer (input,
output, arithmetic unit, and memory) and has a 50 digit
calculation capability. Babbage is considered as the
father of the computer. His girlfriend Lady Ada
Lovelace is considered the mother of programming for
her inputs to the analytical engine. The new software
used today by the Department of Defense called ADA is
named after Lady Lovelace.

o 1892: Creation of punched cards used by the US census
bureau with a tabulating machine.

o 1936: Publication of a paper showin- rany mathematical
problems solved by breaking the problem down in steps,
thus illustrating that solutions can be found with
instructions or a program.

o 1937: Improvements to the analytical engine using
electro-mechanical components.

o 1943: The creation of the ENIAC (Electronic Numerical
Integrator and Calculator) computer. This computer is
made with vacuum tubes. (Wulforst, 1982, p. 63)

e 1946: Improvements to computer design are made with the
publication of a paper describing how to build a computer.
The principles of the paper are still used today.

4

* 1957: Creation of the scientific computer IBM 704 series.

* 1958-64: Replacement of tube technology with transistor
technology, which launches the second generation of
computers.

* 1973: Development of the hand pocket calculator and the
first microprocessor.

* 1973-1978: Everyone can own a personal computer due to
the mass production of microprocessors.

* 1980's: Improvements to microprocessors are made by
making them faster, more powerful, and affordable.

The information contained above is illustrated graphically

in Figure 1-0. The events are shown as occurrences in the

graph. It can be seen that the trend for key computer

technologies are increasing. The computer era has taken off

tremendously in the last 50 years.

5

Key Events of the Computer

Frequency of Occurrence

14 ... 4

12 ... '.

10

6

... I...............

4°.

.............................

0
16 41 86 31 1716 41 66 91 1016 41 85 91 1910 41 08 191

History in 25 Yr Increments

Figure 1-0. Occurrence of Key Events for the
Computer.

With the advent of the first computer system in 1943 the

computer age had begun. The first computer system originally,

used for scientific purposes, was expanded to other

applications. One of the first military applications was in

1946 when the ENIAC was commissioned by the Army's Ballistic

Research Laboratory (BRL) to aid in the production of

trajectory calculations. The original computers (or first

generation) were made of tube technology (either vacuum or

electrostatic). The second generation of transistor

technology occurred in the 1960's. The third generation of

integrated circuits occurred in the early 1970's. The fourth

generation of the microprocessor occurred in the late 1970's.

6

We're in the fifth generation of very large scale monolithic

integrated circuits and massive' parallel processing.

(Wulforst, 1982, pp. 64-70)

D. SOFTWARZ BACKGROUND

The computer age also brought with it the need for

software or computer programs to operate, direct and control

the computer. For the original computers early software

programming was nothing more than setting up the computer to

perform the task using manual switches and plug in wires for

operations. Efficiency in programming and software

development improved as computers became more abundant and the

potential was foreseen. The first types of software could be

classified as microinstructions. These instructions were

written in a binary form (a string of either l's or 0's) which

in turn told the computer what to do (move, store, load, add,

subtract, multiply or divide) with characters/numbers. The

next type of software developed could be classified as

macroinstructions. These instructions were written in

characters (MOV(move), STO(store), LOAD, ADD, SUB(subtract),

MUL(multiply), or DIV(divide)) and the computer would have to

decode what these characters meant and convert them into

microinstruction and then perform the tasking. The next and

final level of software can be classified as high-level

languages. Most programs today are written with high-level

languages. Examples of high-level languages are: FORTRAN

7

(FORmula TRANslation), COBOL (Common Business-Oriented

Language), BASIC (Beginner's All-purpose Symbolic Instruction

Code) and ADA (named after Lady Ada Lovelace and is a language

using modularity for programming large-scale and real-time

defense systems). High-level languages use words or

characters (FORTRAN uses math characters commonly recognized

and used by engineers) that are easy for the programmer to

understand. The use of a compiler or interpreter is necessary

to decode the high-level language to allow the computer to

understand it in the microinstruction terms. (Winograd, 1986,

pp. 86-90)

Z. SIGNIFICANCE OF COMPUTZRS AND THZIR SOFTWARE

Presently, computer systems are used in our everyday

activities. The following are examples of how computers and

software have touched us all in almost every aspect of our

daily lives: (a) Computers run our automatic teller machines

at the bank (e.g., Citibank). It takes 780,000 (780K) lines

of code to support Citibank's automatic teller machines. (b)

Computers are in our cars. The 1989 Lincoln continental

required over 83K lines of code to run the computers that

control items like the digital dashboard, brakes, air bag,

engine, and suspension. (c) Grocery stores use computers at

the checkout line. The IBM checkout scanner requires 90K

lines of code to operate. (Schlender, 1989, p. 107)

8

Furthermore, computers and software are in most military

weapon systems today. To show a trend one can look at the F-4

(a Vietnam Conflict era plane) which practically had no

computer lines of code versus the F-16D that has 236K lines of

code. The C-17 cargo plane (under development) is estimated

to need between 625K to 750K lines of code compared to the

older C-5A that required only 25K lines of embedded code.

Finally, the Space Shuttle requires 25 million lines of code

to run its computers and the B-2 needs ten million lines of

code to operate its 200 computers. The costs required to

develop software are staggering. The estimated cost the

United States spent on software for 1989 is $112 billion,

while the military spent 10% of its budget for an amount of

$30 billion. Therefore, one can see the increasing importance

and amounts of money being spent on software today and the

upward trend for the future. (Kitfield, 1989, p. 33)

9

II. EXAMINATION OF SOFTWARE PROBLEMS

The development of software has practically a perfect track

record. The development is usually over budget and late. The main

reasons are the complexity of software development and difficulty

in software management. The following section further explores the

problems associated with software development and management.

A. GENERAL SOFTWARE PROBLEMS

Writing software is not an easy task. Some people view it as

an art, while others think of it as a pain. All software projects

have common difficulties and problems. Furthermore, there are

additional problems that pertain to military systems. The

following are examples of common software development difficulties

and problems and will be discussed in more detail: estimating

size, variability of requirements, support tools, lack of

historical database, difference in personnel, hybrids, complex

software, art/abstract, no reusable software, and programmers are

very optimistic. (Abdel-Hamid, 1990)

1. Estimating Size

One of the hardest things to accomplish in software

design is estimating the size of the project. Unfortunately, these

estimates have to be done before actual work begins on the project.

Why do we even care how big the project will be? It is from the

estimates of the size of the project that calculations of the cost

10

and manpower are derived. One of the first steps in software

design management is determining the size, which in turn leads to

the other key specifications.

2. Variability of Requirements

Requirements and specifications of the project have to be

laid out at the beginning of the project, which should be

formulated from the end user's needs. The systems analyst works as

the go between, transforming the user's needs into software

requirements and specifications. The systems analyst interfaces

with the end user and the software programmers. The problem occurs

with the requirements themselves. Unfortunately, requirements

change due to changes in conditions such as the environment (the

situation in which the software will be used), the personnel, the

hardware, or because the written requirements will not satisfy the

actual user's needs.

3. Support Toole

Many support tools can help aid the manager with

estimations of project size, manpower requirements, costs, and

management of the project. The main problem with support tools

occurs when they are not used, or are used improperly. It's

obvious to see the problem of not using support tools, but if the

support tools are written to work in one area of software

development and the tools are applied to another area the answers

could be incorrect.

11

4. Lack of Historical Database

One way of attempting to estimate the size, cost, and

amount of effort needed for software design is through the use of

existing projects. Estimating the size of the future project is

done by matching information details with those of previous

projects stored in a central database. Next, cost calculations can

be extrapolated from the size estimations. Finally,

interpolations can be made if the two projects do not match up

perfectly. The problem is that most companies do not have such a

database for several reasons, such as lack of resources of time,

money, and people to implement, to operate and maintain the

database.

5. Difference in Personnel

The number of people that work on a project depends on

items like the size of the project and its importance. The people

themselves vary in many ways. Examples of these variations are:

skill level, programming experience (both in the language and the

virtual machine being used), efficiency, knowledge, and, their

individual capability. Wide variations in personnel can make

estimating manhours needed to accomplish the project extremely

hard.

6. Hybrids

Programming personnel can be placed in three general

categories: technical, management, or a hybrid of the two.

Unfortunately, most people are either the technical or management

type. Therefore it is hard for a technical person to develop and

12

use good management techniques on the project; or it is difficult

for the manager to understand all the important technical aspects.

Developing and managing software takes disciplines and skills from

both the technical and management fields.

7. Complex Software

Many software projects are very complex by nature. One

can get an idea of the complexity by looking at the functions that

must be performed, the numerous interfaces that must be made, and

the accuracy in which the software must operate. Because of this

complexity, many software projects are a one-of-a-kind item that

can not be exactly duplicated from project to project.

8. Art/Abstract (Not Physical)

Developing software is not the same as building a bridge.

The comparison is to provoke the idea that building a bridge is a

science (civil engineering) while developing software is not. The

civil engineer uses formulas and calculations to figure the load

and stress that will be placed on the structure, while programmers

on the other hand, do not have formulas or calculations to help

write the software. Some refer to writing software as an art more

than a science. The differences between software (languages,

function, applications and development) varies enough to make

development almost a new adventure each time.

9. No Reusable Software

Software is not reused very often for several reasons.

One of the reasons for lack of reusable software is uniqueness.

Software differs from project to project (even when using the same

13

language) because of its function, application, and how its

developed. Another major problem encountered for reusable software

is the extra quality and reliability needed. The software would

need to be of such high quality and reliability, because of other

people and projects depending on it, and so many varying kinds of

applications. Finally, the software would need to be maintained if

modifications were necessary, or mistakes were found.

10. Programmers are Very Optimistic

It seems to be human nature to not plan enough time to

get a task done. People tend to be either optimistic or do not

have an idea of how many things could possibly go wrong when

working on any kind of project. The famous "Murphy's laws" (what

can go wrong; will go wrong or things break at the worst possible

moment) tend to eat up much time and energy.

a. MILITARY SOFT R Z PROBLZUS

The following are some examples of common military software

development difficulties and problems. (Congress, 1989, pp.

239,240)

1. Life of Project

The software needed to support the military is different

from commercial software in several ways. The life of use for the

software is generally longer. It is not uncommon to have the same

software in use for periods longer than twenty years. The length

14

of use is dependent on effectiveness compared to its commercial

civilian counterpart, which is dependent upon profit and

efficiency.

2. Fmbedded

Software is typically embedded into a weapon system.

Therefore, the software has to not only be contained within the

weapon system, but interface with other components (e.g., in a

missile, the software interacts with the tracking, navigational,

and propulsion systems). The interaction between components then

leads to much stricter interface requirements compared to a

commercial developed stand-alone package.

3. Real Time Critical

Many military systems have to support on going operations

in real time. Software must aid the commander in decision making

rolea during military operations. Examples of this type of

software can be categorized as command and control system software.

4. Life-Critical

One major difference between military software and

civilian software is that miliary software is life-critical.

Either the software is supporting our side (friendly forces) with

command and control leading to better use of our assets or the

software is embedded in a weapon system used to dwindle the enemy's

forces.

5. Facing Intelligent Adversaries

Civilian companies may work in a dog-eat-dog world, where

the other guy is trying to get you, in a metaphorical sense.

15

However, this is true in the literal sense for the military. The

system has not only to cope with the harshness of the physical

environment (heat, humidity, sand, etc.), but also the fact that

the enemy is trying to destroy you and your system.

16

III. SOFTWARE LIFE CYCLE DEVELOPMENT

This chapter will describe the classic life cycle approach to

software development and discuss the standard means of supporting

the cycle. The life cycle exists from the software's inception to

retirement and will be described in its entirety. The explanation

will be in general terms to allow the reader a broad understanding

of software development. Discussions will continue with general

procedures employed by the military in its software development.

Finally, comparisons between civilian (classic life cycle approach)

and military software development procedures will be made.

A. CLASSICAL SOFT WARE LIFE CYCLE DEVELOPMENT

1. Basic Software Systems Development Principles

There are six basic principles of software system

development: 1) Involve the end user throughout systems

development cycle. 2) Work should be done in phases and tasks to

improve management for systems development. 3) System development

tasks can overlap and are not always sequential in nature. 4) An

economic justification for systems development must be accomplished

by treating the development as a capital investment. 5) There is

no such thing as irretrievable sunken costs. Establish decision

points throughout system development to determine if continuation

of project is still worth while economically with respect to

17

potential not now much has already been sunk. 6) Documentation

should be done continuously throughout system development. (Witten,

Bentley & Barlow, 1989, pp. 81-85)

2. SYSTEM SOFTWREI DEVELOPMENT LIFI CYCLE

The actual phases of the system development life cycle

for software are as follows: system engineering, analysis, design,

code, testing, and maintenance (refer to the Figure 3-0).

Improvements and newer techniques for some phases will be presented

in the following chapter.

S analysis

~design

~code

testing

Figure 3-0. The Classic Software Life Cycle (Pressman, 1989,
p. 13)

18

a. System Engineering

The whole existing system has to be understood and

defined before any work can be accomplished. The system includes

all the essential components needed for operational capability.

Boundaries need to be drawn to limit the scope of the project to

only the required size. The defining of and setting boundaries for

the system is an example of placing the system-in-focus.

Constraints may be the determining factor for boundary selection.

(Jones, 1990)

The next step involves deriving the user's

requirements. The software manager, and software specialist try to

understand the problem being solved or the new capability being

created by the software. Also, the functionality of the system is

determined in this phase. "What is the system supposed to do?" one

question that needs to be addressed by the software manager, and

software specialist. (Ramamoorthy, Prakash, Tsai, and Usuda, 1984,

p. 58)

b. Analysis

The analysis phase determines and defines the user

requirements. The requirements can be used to solve an existing

problem or provide a new capability. The analysis phase reviews

the viable user requirements. A viable user requirement is one

that is within the system resources and capabilities. Furthermore,

the viable user requirements are transformed into specifications

through the use of the requirement specification development

process. This type of systems approach will develop software that

19

can be integrated into the entire system. The integration of

software into the whole system increases its effectiveness.

Finally, comparisons are made between the possible designs. Trade-

offs must be analyzed and the best alternative chosen. Figure 3-1

illustrates how the viable user requirements are turned into

specifications and passed on to the design phase. (Ramamoorthy,

Prakash, Tsai, and Usuda, 1984, p. 61)

Figure 3-1. Requirement Specification Development Process

20

C. System Design

The system design phase receives the system

specifications from the analysis phase. The specifications must

reflect the user's requirement as shown in Figure 3-1. The design

phase then breaks down the system specifications into its

components. The break down continues until the components or

modules are in a manageable state. This type of process is called

decompositioning. Next, the decomposed modules are separated into

areas by using well defined criteria. This process is called

partitioning. Partitioning is done with software characteristics

of minimizing complexity, providing portability, and

maintainability in mind. Examples of both decomposition and

partitioning are contained in Figure 3-2. (Ramamcorthy, Prakash,

Tsai, and Usuda, 1984, p. 63)

LEVEL I REOUMEMEW

puma 1 PAano 2 PARTIMo 3

Figure 3-2. Decomposition and Partitioning

21

d. Code

Coding is also referred to as the programming phase.

The coding phase first produces structure charts from the

information produced in the partitioned modules in the design

phase. Writing the code for each of these modules happens next.

The detailed structure charts are used as a guide to develop the

actual code (also called software) for each module. The next phase

(testing) works in conjunction with this phase.

*. Test

The software has to be tested once it is written.

Effective testing has to be planned to make it efficient. Four

general principles of testing are:

1) Design test cases with the objective of uncovering errors
in the software. 2) Design tests systematically; don't rely
solely on intuition. 3) Establish a testing strategy that
begins at the module level. 4) Record all testing results,
and save all test cases for reapplication during software
maintenance. (Pressman, 1988, pp. 193, 194)

There are three basic levels of software testing.

The three levels are unit testing, integration testing and

acceptance testing. Unit testing will test individual units also

called modules, as mentioned earlier. Two types of unit testing

are black box testing and white box testing. Black box testing has

known inputs and knows the projected outputs from the module. The

black box testing only cares about how the module functions

(processes the inputs; giving the proper outputs) and NOT what is

actually inside the box. White box testing on the other hand; IS

concerned with the internal operations of the module. The white

22

box testing tests the actual processing of the module itself.

Integration testing will take the modules that have been unit

tested and start combining them. The modules are combined and

tested together to ensure the system in its entirety works.

Acceptance testing is the last test preformed on the system. The

acceptance test is done after the installation of the system is

completed. The system moves into the operation and maintenance

phase, once passing the acceptance test.

f. Maintenance

Maintenance in the software development cycle means

more than just fixing the undiscovered errors left over from

testing. While it is part of maintenance, other parts deal with

revisions and improvements that are made to the software.

Improvements are sometimes called revisions and refer to an upgrade

that may help the system operate better. Revisions may be

necessary as changes to the environment (requirements, operating

procedures, or technology) . They are made to enhance the system, or

are needed for the system to adapt. Finally, the users themselves

may request changes to the software to provide additional benefits,

and make operations easier or more efficient. Request for changes

are sometimes made because the user wasn't fully aware of the

systems capabilities or lack of them during the development.

B. MILITARY SOFTWARE DEVELOPMENT PROCESS

Military software is fundamentally like advanced civilian
software, only more so. That is, the properties of real-time
operEational software in civilian banking, airline
reservations, or process control, are the same as those of

23

weapon-system software. Big civilian database and file
systems look essentially like military logistics, finance, and
personnel software. In the operation of a ship or a base, one
finds many small computers whose tasks are essentially the
same as those in civilian businesses. (Report of the Defense
Science Board, 1987, pp. 6,7)

1. Department of Defense Standard 2167A (DOD-STD-2167A)

The DOD-STD-2167A is the overall guiding document used

for military and the remaining portions of the Department of

Defense for software development.

The purpose of this standard is to establish requirements to
be applied during the acquisition, development, or support of
software systems. (DOD-STD-2167A, 1988, p. 1)

The following are the major activities that occur during

military software development: System requirements

analysis/design, software requirements analysis, preliminary

design, detailed design, Coding and Computer Software Component

(CSC) testing, CSC integration and testing, Computer Software

Configuration Item (CSCI) testing, and system integration &

testing.

2. Comparison of Classical Software Life Cycle Development

Versus Military Software Development

The relationship of military software development to the

classical software life cycle development is easy to see. The

major military activities are a sub-set of the life cycle. All the

phases for military software development are contained within the

classical software life cycle except for exclusion of the

maintenance phase. The maintenance phase is left out of the major

military activities because the military standard is attentive to

24

software development and testing. The following Table 3-0 matches

the classical software life cycle to its equivalent counterpart

under the DOD software development:

TABLE 3-0. COMPARISON OF THE CLASSICAL SOFTWARE LIFE
CYCLE TO DOD-STD-2167A SOFTWARE DEVELOPMENT

CLASSICAL SOFTWARE LIFE DOD-STD-2167A SOFTWARE
CYCLE DEVELOPMENT

System Engineering System Requirements
Analysis and System Design

Analysis Software Requirements
Analysis

System Design Preliminary Design, and
Detailed Design

Code Coding and CSU Testing

Test CSU Testing, CSC
integration and Testing,
CSCI Testing, and System
Integration and Testing

Maintenance Not addressed because
document covers software
development only

The system engineering phase in the classical software

life cycle corresponds with two major activities of system

requirements analysis/design in the military software development

cycle. The system requirements analysis/design is the equivalent

to the system engineering phase in the software life cycle. The

development of overall system requirements occur in this major

activity in the military software development cycle.

The next phase of the classical life cycle is the

analysis phase which corresponds to the software requirements

analysis phase for the military version. The analysis phase

25

transforms the system requirements into specifications of the

detailed user requirements. These specifications are sent to the

design phase.

The third phase in the classical software life cycle is

the same as in the military. The life cycle refers to it as the

design phase while the military software development refers to it

as two activities of preliminary and detailed design. Details of

the user specifications are extracted by the activity of

decompositioning and organized by partitioning to allow the code to

be written next.

The remaining activities of the military software

development are contained in the fourth (code) and fifth (testing)

phases of the classical software life cycle. The military

activity of coding and Computer Software Unit (CSU) testing,

basically develops the code for an individual unit/module and tests

it separately. The next step in the military (Computer Software

Components Integration and testing (CSCI)) is to start integrating

each of the computer software components and ensuring they work as

a group. Then the military activity calls for testing the computer

software configuration items individually to ensure they work under

the Computer Software Component Integration (CSCI) testing.

Finally, all software components and configuration items are

integrated together in one large system, and tested under the

system integration and testing.

The main difference between civilian software and

military is documentation. The military requires much more

26

documentation than its civilian counterpart. The DOD-STD-2167A

requires various documentation (referred to as deliverable products

in the document) to coincide with the end of each software

development phase.

As with civilian government contracts, one of the
distinguishing attributes of military contract programming is
documentation. However, in the United States at least, the
documentation is controlled in considerable detail by military
specifications, or 'MilSpecs' as they are called. Military
specifications on software documentation are so precise, so
exacting, and so necessary in order to complete the contracts
that a whole generation of specialists has grown up who earn
their livings by documenting systems in accordance with
MilSpecs. (Jones, 1986, p. 124)

Table 3-1 shows the documentation/deliverable products

required for each phase of software development called out by DOD-

STD-2167A. (DOD-STD-2167A, 1988, pp. 12, 13)

27

TAWBL 3-1. DOCUMENTATION REQUIRED FOR DOD-STD-2167A

MILITARY SOFTWARE DOCUMENTATION/DELIVERABLE
DEVELOPMENT PHASE FROM DOD- PRODUCTS
STD-2167A

System requirements analysis Preliminary system specification

System design System specification, system
segment design document,
preliminary software requirements
specification(s), preliminary
interface requirements
specification, software
development plan

Software requirements analysis Software requirements
specification(s), interface
requirements specification

Preliminary design Software design document(s) (pre-
design), software test plan (test
IDs), preliminary interface design
document

Detailed design Software design document(s)
(detailed design), software test
description(s) (cases), interface
design document

Coding and CSU testing Source code listings, source code

CSC integration and testing Software test description(s)
(procedures)

CSCI testing Updated source code, software test
report(s), operation and support
documents

System integration and testing Version description document(s),
software product specification(s)

However, the recurring theme that needs to be stressed is

that the military software development process follows the classic

software life cycle. It then becomes apparent, that what applies

to the classic software life cycle, also applies to military

software development when addressing software management. The only

major difference is the amount of documentation required for

military software development. Therefore when the following

28

chapters address software management and new software techniques to

improve software management, it applies to both the classic life

cycle and to the military development.

29

IV. SOFTWARE PROJECT MANAGEMENT

A. INTRODUCTION

Software project management uses the same basic components

that are applied in regular management. The management process is

composed of four elements: planning, organizing, directing, and

controlling. Planning is a formal process of making decisions,

which depends upon and affects the future. Some plans are designed

for the short term (weekly, monthly, or quarterly), while others

are long range plans (yearly, 5-year, or 10-year). Organizing is

the process of prescribing formal relationships among people and

resources to accomplish organizational goals. Organizing is needed

once an organization grows beyond a single member. People are

grouped into labor categories, and formal organizational structures

must be developed. Individual workers must be placed into

individual jobs and job classifications. Directing is the element

that makes things happen. This phase is sometimes known as the

initiating element. It is the process where the manager can

directly and personally influence the behavior of the workers.

Controlling is the process the manager uses to measure the progress

of the program, and compare it to the plan; to verify if any

corrective measures are needed. The controlling process will then

monitor the results (obtain feedback) of the corrective action(s)

30

to record if any further action is needed. The functions for each

of the elements of management can be seen in Figure 4-0. (Newman,

Warren, and Kirby, 1982, pp. 4, 40, 204, 314, and 465)

Figure 4-0. Project Management
Cycle (Donohue, 1985, p. 219)

Contained in the inner center section of Figure 4-0 is

information which must be processed to allow the manager to make

his/her decision. The figure illustrates how the four management

elements support the outer center section of decision making. The

cycle of project management starts with planning and works its way

around the figure in a clockwise fashion as the arrows indicate.

The main functions for each element are also listed. The major

functions for planning are: forecasting, short-range and long range

objectives, organizational policies, standards and operating

procedures, task analysis, and obtaining and allocating resources.

31

The major functions for organizing are: job description, dividing

up total activities into positions, staffing, determining

organizational relationships, and delegation of organizational

authority. The major functions for directing are: motivating,

communicating, leading, coordinating, coaching and appraising

performance, resolving conflict, and handling corporate power and

politics. The major functions for controlling are: performance

monitoring, comparing actual and desired performance, and taking

corrective action. The following sections will apply these four

elements of management to the specific tasks necessary for

successful software project management (Thayer, 1988, p. 17).

B. PLANNING

Some difficulties in software management planning are

summarized as follows:

* Writing software requirements is difficult

* Planning is often incomplete or not accomplished

* Prediction of software costs and schedules are inaccurate

* Selection criteria for best procedures is not thought out
completely (Thayer, 1988, pp. 23-25)

Planning is a very important aspect for software management

and if done properly, can help prevent problems or difficulties for

the software project down the road. Planning activities and tasks

are created to help relieve the difficulties and problems

associated with the major issues above. The detailed steps and

activities for planning are: (Thayer, 1988, pp. 23-25)

32

1. Set Objectives and Goals

Objectives and goals are very specific ideas towards the

formulation of software project planning. The project manager must

determine what the software must achieve (the objectives) to be

considered successful. The goals are a more detailed means of

reaching the overall objectives of the software project. In this

first step, not only what the software project must accomplish but

also when and what resources are necessary must be considered.

2. Develop Strategies

Strategies can be referred to as strategic goals, because

they are simply long range goals. The program manager must look at

the long range goal of the organization and compare it to the long

range goal of the software project. An attempt to have no

conflicts between the two should be made. Finally, the software

project manager must have a long range plan of meeting the goals

and objectives developed in the previous section.

3. Develop Policies

A definition for a policy is as follows:

General statements or understandings which guide decision
making and activities. Policies limit the freedoms in making
decisions but allow for some discretion. (Thayer, 1988, p. 23)

Policies are predetermined management decisions that can

be applied in situations that meet the specific conditions

identified for that particular policy. The policies act as an aid

or guide for individuals to follow when routine decisions fall

within the constraints.

33

4. Determine Courses of Action

Software project management has three general variables

of time, money, and quality which help in determining his/her

course of action. There is more than one way to achieve the same

expenditure of money on a project, if cost were the only

consideration. The project manager has various ways to achieve

what is considered to be a successful project. These various ways

are the courses of action that must be determined and the next

phase (make decision) is used to make the best choice.

5. Scheduling

The software project manager along with inputs or

considerations from the end user of the software are used to make

the decision between the alternatives. The decision should involve

comparisons of costs, schedule, design strategies, and risks

associated with each choice. Some examples of the project

management tools for scheduling are: milestone chart, Gantt chart,

full wall scheduling, Critical Path Method (CPM), and Program

Evaluation and Review Technique (PERT). (Donohue, 1985, p. 222)

a. Milestone Chare

The milestone chart is one of the simplest

scheduling tools. It shows through the use of geometric symbols

(circles, squares, or triangles) the activities needed for the

completion of the software project. However, it does not show any

interrelationships between the activities. Furthermore, the

milestone chart shows only when activities are completed. It does

not prove to be very useful for the software project manager in

34

terms of feedback on the progression of an activity. Therefore,

this type of scheduling technique is used for small software

projects or as a way to summarize complex schedules containing many

tasks.

b. Gantt Chart

Another name for a Gantt chart is a bar chart. This

scheduling technique overcomes many of the limitations of the

milestone chart. The Gantt chart is good for small software

projects (less then 25 activities) and does show the start and

completion dates of the activities. The Gantt chart also reveals

the progress of the activities while being administered. While it

is not impossible to show interdependence among project activities

with the Gantt chart, it is easier with CPM and PERT scheduling

network techniques. The Gantt chart, however, does show possible

overlapping of activities much easier than CPM or PERT. Therefore,

it is not uncommon for the users of CPM and PERT to also use a

Gantt chart by translating their scheduling network technique into

a Gantt calendar chart. The main reasons are to take advantage of

the Gantt chart's overlapping display capability and also because

the Gantt chart is one of the easiest scheduling techniques to

understand visually.

C. Full Wall Scheduling

The name full wall scheduling gives the reader a

decent visualization of this scheduling technique. A wall is used

to place a long roll of paper with vertical and horizontal lines to

start the technique. The vertical lines represent time in weeks

35

and the horizontal lines represent the employees who are working on

the software project. This method works best with medium sized

software projects of 25 to 100 tasks and team members from three to

ten. The team members must meet regularly and place marks on the

wall schedule showing the progress each has made. The full wall

scheduling technique works well in the area of team member

interaction, due to the frequent meetings, which can clear up

problems early and on the spot. The major problem with this

technique however, is that it does not show the interrelationships

of tasks.

d. CPM and PERT

The next two techniques of CPM (Critical Path

Method) and PERT (Program Evaluation and Review Technique) can be

classified as precedence networks. Both of these techniques can

determine the fastest way of completing a software project or the

critical path. The critical path allows the software program

manager to monitor the progress of the project. The critical path

is important because it must remain on time or else the whole

project will be late. These two techniques are dynamic. Updates

and changes can be made at any time during the project, producing

a new critical path. The precedence network methods will show

interrelationships between activities. However, they do not show

the progress during the activities (as previously mentioned, this

is when software managers who use CPM or PERT like to use the Gantt

chart). For monitoring purposes the activity must be completed

without interruption using the precedence network methods.

36

The basic difference between the two techniques is

that CPM emphasizes activities, and PERT emphasizes events.

Activities are the actions taken to complete the work, while an

event does not occur until the work has been completed and is

considered a milestone. A second difference is the way in which

the two techniques determine the time estimates. In using CPM,

time to complete an activity must be well known and only one number

is used. PERT, however, has the capability for using probabilities

of the time to complete an event. The PERT method also allows the

software project manager to place three time estimate ratings of

best, worst, and most likely times. The probabilities for each of

the estimated times are weighted accordingly, from which is most

probable to occur to the least likely to occur. Therefore, PERT is

used when the specific times are not known. (Markland and Sweigart,

1987, pp. 438-440)

Each of the five scheduling techniques can be used

in project software development depending on project

characteristics. It is up to the software project manager to

decide which technique he/she should use. The questions the

software project manager wants to answer before deciding are: (1)

What are the strengths and weaknesses of each software project

scheduling technique; and (2) Given certain criteria, which

software project scheduling technique should I choose? The

following Tables (4-0, 4-1, 4-2, 4-3, 4-4, and 4-5) should help in

answering those questions.

37

TABLZ 4-0. MILESTONE TECHNIQUE (Donohue, 1985, p. 225)

CRITERIA STRENGTHS WEAKNESSES

APPLICABILITY Only small errors No explicit
in measurement are technique for
likely to occur if depicting
activity durations interrelationship
are short. s.

RELIABILITY Simplicity of Frequently
system affords unreliable
some reliability because change

over time.
Numerous
estimates in a
large project,
each with some
unreliability,
may lead to
errors in judging
status.

IMPLEMENTATION Easiest of all Difficult to
systems because it implement for the
is well control of
understood. operations where

time standards do
not ordinarily
exist and must be
developed.

SIMULATION No significant
CAPABILITIES capability.

UPDATING STATUS Easy to update
periodically. Not
necessary to use
computer.

FLEXIBILITY Poor
accommodation of
frequent logic
changes.

COST Data gathering, The chart tends
processing and to be inflexible.
display relatively Program changes
inexpensive. require new

charts.

38

TABLE 4-1. GANTT TECHNIQUE (Donohue, 1985, p. 227)

CRITERIA STRENGTHS WEAKNESSES

APPLICABILITY Only small errors in No explicit technique
measurement are likely for depicting
to occur if activity interrelationships.
durations are short.

RELIABILITY Single duration Frequently unreliable
estimate for each because judgement of
activity avoids error estimator may change
due to over- over time. Numerous
complexity. estimates in a large

project, each with
some unreliability,
may lead to errors in
judging status.

IMPLEMENTATION Easiest of all systems Quite difficult to
in some respects implement for the
because it is well control of operations
understood. where time standards

do not ordinarily
exist and must be
developed.

SIMULATION No significant
CAPABILITIES capability.

UPDATING STATUS Easy to update graphs May have to redo
periodically if no graphs because of
major program changes. inability to update
Not necessary to use current charts.
computer.

FLEXIBILITY Can also be used for If significant logic
estimating resource changes occur
requirements. frequently, numerous

charts must be
completely
reconstructed.

COST Data gathering and The graph tends to be
processing relatively inflexible. Program
inexpensive. Display changes require new
can be inexpensive if graphs, which are time
existing graphs can be consuming and costly.
updated and if Expensive display
inexpensive materials devices are frequently
are used. used.

39

TABLK 4-2. FULL WALL TECHNIQUE (Donohue, 1985, p. 226

CRITERIA STRENGTHS WEAKNESSES

APPLICABILITY Accurately depicts No explicit
work sequence. representation of

activity
interrelationships.
Can be easily
computerized.

RELIABILITY Single duration Numerous estimates in
estimate for each a large project, each
activity avoids errors with some
due to over- unreliability, may
complexity. Input lead to significant
from project team errors in judging
members often overall project
eliminates errors and status.
problems at the
outset.

IMPLEMENTATION Graphic display of Time requirements and
work sequence and logistics problems are
early discussion of difficult to overcome.
project is desired by
project managers.
Easily explained and
understood.

SIMULATION No significant
CAPABILITIES capability

UPDATING STATUS Moderate capability. Usually requires
Activities are clearly redrawing schedule.
identified and time Often difficult to
estimates can be update because
obtained as needed. activity

interrelationships are
not explicitly shown.

FLEXIBILITY Schedule can be Schedules for even
changed to reflect moderately complex
scope changes. Can be projects become
used to estimate complicated.
resource requirements.

COST Can reduce overall More man-hours are
project costs through required than in any
better planning and other system; hence
control. this approach is often

the most costly.

40

TABLE 4-3. CPM TECHNIQUE (Donohue, 1985, p. 226)

CRITERIA STRENGTHS WEAKNESSES

APPLICABILITY Accurately depicts No formula is provided
work sequence and to estimate probable
interrelationships time to completion;
among activities, consequently, the

technique is as valid
as the estimator. The
margin of error is
generally less on
projects with little
uncertainty.

RELIABILITY Single duration Numerous estimates in
estimate for each a large project, each
activity avoids errors with some
due to over- unreliability, may
complexity. lead to significant

errors in judging
overall project
status.

IMPLEMENTATION Graphic display of Relatively difficult
work sequence and to explain to those
activity unfamiliar to
interrelationships is approach. Complexity
desired by managers of of schedule may
complex projects. intimate clients.

SIMULATION Excellent for Requires computer for
CAPABILITIES simulating alternative all but very small

plans if computerized, projects.
especially when
coupled with time-
cost-resource aspects.

UPDATING STATUS Good capability. Schedules for even
Activities are clearly moderately complex
identified and time projects require use
estimates can be of computer.
obtained as needed.

FLEXIBILITY Portions of the Schedules for even
network can be easily moderately complex
changed to reflect projects require use
scope changes if of computer.
computerized. Can be
used to estimate
resource requirements
if plotted on time
scale.

COST Can reduce overall Considerable data are
project costs required to use CPM as
significantly through both a planning and
better planning and status repcrting tool
control, and a computer is

almost invariably
required. Therefore,
the cost outlay can be

I fairly extensive.

41

TABLZ 4-4. PERT TECHNIQUE (Donohue, 1985, p. 228)

CRITERIA STRENGTHS WEAKNESSES

APPLICABILITY PERT, like CPM is Overly complex for
capable of depicting small projects.
work sequence. The
use of three time
estimates should make
it more accurate than
any other technique.

RELIABILITY Probabilistic duration Securing three
estimates may be more duration estimates for
accurate than single each activity requires
estimate, more information which

could introduce
additional error.

IMPLEMNTATION Graphic display of The complete PERT
sequence and event system is quite
interrelationships is complex, and
desired by managers of therefore, difficult
complex projects. to implement. May

intimidate first time
users and clients.

SIMULATION Excellent for Requires computer for
CAPABILITIES simulating alternative all but very small

plans if computerized, projects.
especially when
coupled with time-
cost-resource aspects.

UPDATING STATUS Events are clearly Estimation of activity
identified and elapsed durations is quite
times can be obtained time consuming, and
as needed, calculation of

expected times
requires use of a
computer.

FLEXIBILITY As the project changes Schedules for even
over time, the network moderately complex
and new time estimates projects require use
can be readily of computer.
adjusted to reflect
changes. Can be used
to estimate resource
requirements if
plotted on time scale.

COST Can reduce overall More data and more
project costs computation are
significantly through required than in any
better planning and other system; hence
control. the system is very

I costly.

42

TABLE 4-5. SELECTING A SCHEDULING TECHNIQUE
(Donohue, 1985, p.228)

CRITERIA MILESTONE GANTT FULL WALL CPM PERT

Activities vs Event Activity Event Activity Event
Events
Oriented_

Suitability Poor Poor Fair Excellent Excellent
for Large
Projects

Suitability Good Good Poor Poor Poor
for Small
Projects

Degree of Very Low Low Moderse' High Highest
Control

Acceptance by Best Excellent Good Fair Poor
Users

ZEae of Easiest Easy Hardest Hard Harder
As embly

Degree of Lowest Low Moderate High Highest
Flexibility

Ease of Easiest Easy Moderate Herd Hardest
Manual
Calculation

Accuracy of Fair Fair High Higher Highest
Projections

Cost to Lowest Low Highest High Higher
Prepare and
Maintain

Vague Project Poorest Poor Fair Good Excellent
Scope__________________

Complex Poorest Poor Better Excellent Exoellent
Project Logic

Critical Fair Fair Good Good Excellent
Completion
Date

Frequent Good Good Good Fair Hard
Progress
Chock
Required

Frequent Easiest Easy Hardest Hard Harder
Updating
Required

Frequent Poor Poor Poor Fair Fair
Logic Changes
Required

Appeel to Good Good Excellent Excellent Excellent
Client

43

6. Cost Estimation

The previous pages and tables described the scheduling

techniques for planning software project management. This section

will discuss cost estimation techniques. There are seven basic

cost estimation techniques used today. The following descriptions

and tables will help show why so many software projects are

produced over budget. (Boehm, 1984, p. 242)

a. Algorithmic Models

These models have one formula or algorithm that

produces a cost estimate. The algorithm is a function of several

variables which are considered important criteria or cost drivers.

b. Expext Judgement

This method involves the judgement of someone in the

field of software cost estimation who is considered an expert. The

expert alone comes up with the cost estimate. The Delphi technique

was developed to prevent the dependency on just one expert. The

Delphi technique uses several experts to form a consensus,

providing their inputs in a nonattributive way.

C. Analogy

The analogy method compares already completed

software development project(s) with the current project. From the

comparison of the two software projects a cost estimate is derived

for the project not yet developed.

d. Price-to-Win

The price-to-win philosophy states that the software

project will cost whatever is necessary to win the contract. The

44

contract. The idea is to get your foot in the door and be awarded

the contract, then make your profit when modifications or changes

are done. This method appears to be only viable to software

projects that place bids on contracted work. However, this

philosophy can apply to non-contracted software, if one can imagine

a software project manager stating the cost estimates based on what

he/she believes the boss wants to hear.

e. Top-Down

A global price estimate is derived from the entire

software project properties first. Next, each of the project's

components are estimated from the global price. The component

dollar amounts are determined from the ratio each component has in

relation to the entire software project.

f. Bottom-Up

The bottom-up method is similar to the top-down

approach, except done in reverse. Each software component cost is

determined and then summed together for the price of the entire

project. Table 4-6 shows the strengths and weaknesses of each of

the seven cost-estimation techniques described above: (Boehm,

1984, p. 243)

45

TABLE 4-6. STRENGTHS AND WEAKNESSES OF COST ESTIMATION METHODS

METHOD STRENGTHS WEAKNESSES

Algorithmic model - Objective, - Subject inputs
repeatable, - Assessment of
analyzable formula exceptional
- Efficient, good circumstances
for sensitivity - Calibrated to
analysis past, not future
- Objectively
calibrated to
experience

Expert judgement - Assessment of - No better than
representative- participants
ness, interactions, - Biases,
exceptional incomplete recall
circumstances

Analogy - Based on -Representative-
representative ness of
experience experience

Price to win - Often gets the - Generally

contract produces large
overruns

Top-down - System level - Less detailed
focus basis
- Efficient - Less stable

Bottom-up - More detailed - May overlook
basis system level
- More stable costs
- Fosters - Requires more
individual effort
commitment

Table 4-6 above shows a general unsatisfactory effort for

software cost estimating. One observation that can be made is that

no one alternative appears to be better than another. Furthermore,

the Parkinson and price-to-win methods (while still used today) do

not produce satisfactory software cost estimates. The remaining

46

methods are balanced between their strengths and weaknesses. It is

understandable to see why so many software projects are over budget

with the aforementioned cost estimating methods. A combination of

many of the methods would need to be performed on a software

project and a comparison of the results would need to be made in

order to produce a good cost estimation. However, a better

software cost estimation method exists. The method is called the

Constructive Cost Model (COCOMO).

g. COCOMO

COCOMO's primary concern is to help software project

managers understand the cost consequence of decisions made during

software development. The COCOMO method provides large amounts of

data and forces the software project manager to understand and

determine the numerous attributes or cost drivers associated with

development. The software tool has three increasingly detailed

models. The intermediate level COCOMO will be described. Table

4-7 that follows is used to determine the type of software project.

There are three classifications of software projects when using the

intermediate COCOMO technique. (1) An organic software mode

project is one that comes from a stand alone package or has

familiar and stable requirements; (2) The embedded software mode

is software that is intrinsically part of the hardware. Therefore,

interface specifications for conformance is considerable. The

47

software may be unfamiliar and have unstable requirements; and (3)

The semidetached software mode falls between the other two modes.

The software project manager can determine the software mode by

matching the features of Table 4-7 with their software project.

TABLE 4-7. CHARACTERISTICS OF THREE MODES OF SOFTWARE

MODE

FEATURE ORGANIC SEMIDETACHED EMBEDDED

Organizational Thorough Considerable General
understanding of
product
objectives

Experience in Extensive Cor 'iderable Moderate
working with
related software
systems

Need for Basic Considerable Full
software
conformance with
pre-established
requirements

Need for Basic Considerable Full
software
conformance with
external
interface
specifications

Concurrent Some Moderate Extensive
development of
associated new
hardware and
operational
procedures

Need for Minimal Some Considerable
innovative data
processing
architectures,
algorithms

Premium on early Low Medium High
completion

Product size <50,000 <300 KDSI All sizes
range Delivered Source

Instructions
(KDSI)

48

The next step is to estimate the size of the

software project. One method is by using historical data from

other software projects (example of the analogy method described

previously) to determine size of THE software project. The

information is then placed into the appropriate formula (example of

the algorithmic modeling technique described previously) from Table

4-8 that follows. The formulas under the "NOMINAL EFFORT" column

would be used first to determine the Man Months (MM) for the

software project. Suppose for example, it was determined that a

software project was an organic software mode because the employees

were familiar with the software development, the requirements were

stable and the estimated size was 20,000 Delivered Source

Instructions (20KDSI). The solution would be: (Man Month)N =

3.2(20)105 = 74 Man-Months (MM).

TABLE 4-8. FORMULAS FOR THREE MODES OF SOFTWARE

DEVELOP- NOMINAL EFFORT SCHEDULE
MENT MODE

ORGANTk (Man Month), - 3.2(KDSI)1-0 5 TDEV - 2.5(Man MonthD,) 36

SEMIDETACHED (MM), - 3.0(KDSI) 1 "12 TDEV - 2.5(Man Monthv,) 3 5

EMBEDDED (NM),, - 2.8(KDSI)}.2
0 TDEV - 2.5(Man Mont:h.) 0 ' 3

(KDSI = thousands of delivered source instructions)

This number 74MM is what is referred to as the

nominal development effort. The nominal development effort is just

that; nominal, which means (cost drivers effecting the project are

rated as average or nominal). Some examples of the cost drivers

for the intermediate COCOMO technique fall under four general areas

of: product attributes (e.g. software reliability, and product

49

complexity), computer attributes (e.g. execution time constraint,

and main storage constraint), personal attributes (e.g. analyst

capability, and programmer capability), and project attributed

(e.g. use of modern programmer practices, and use of software

tools). A total of 15 cost drivers are identified for the

intermediate COCOMO technique. It is here the COCOMO technique can

work over time for the software project manager. COCOMO can be

used for sensitivity analysis. Sensitivity analysis can show the

effects on time and money to the software project, by changing one

of the 15 cost drivers at a time and reviewing the results. Now,

assume our example has all 15 cost drivers categorized as nominal.

Then the answer of 74MM represents the number of man months (an

estimator for cost) which is the expenditure to produce that

software. The final step will show the COCOMO user the actual

estimated time to develop the software. Man months are used for

cost estimation by themselves or can be converted into actual

dollars if so desired. Therefore, this formula "TDEV = 2.5(Man

Monthv)°0 38" from Table 4-8 under the "SCHEDULE" column would be

used since our example has previously been determined the organic

mode. The solution for how long it would take to develop the

20KDSI organic mode software is: TDEV = 2.5(74MM)0 39 _ 13 months

(approximately).

Finally, the COCOMO technique has been calibrated by

the use of 63 software projects that range from business,

scientific, systems, real-time, and support. The technique has

estimated the software projects within ±20 percent of actual costs

50

approximately 68 percent of the time. Furthermore, depending on

the use of the technique, COCOMO can be calibrated to fine tune it

to better accuracy. (Boehm, 1984, pp. 248-251)

7. Set Procedures and Rules

In contrast to policies, procedures establish
customary methods of handling future activities and
provide guides to action rather than to decision
making. Procedures detail the exact manner in which
to accomplish an activity and allow very little if any
definite actions to be taken or not taken with respect
to a situation and allows no discretion." (Thayer,
1988, p. 24)

8. Develop Programs

The program (not the same as a computer program) is the

collective items of specific goals, policies, procedures, and rules

interacting with the tasks, and resources to achieve a desired

course of action. The software project manager pulls together the

three areas of; tasks necessary for the completion of the software

project, cost and resources needed, and the schedule.

9. Forecast Future Situations

The software project manager would best be suited if

he/she had a crystal ball to look into the future. The first type

of future events are the availability of resources. The resources

of time, money, people and equipment are some examples for future

consideration. A good indicator of the future for a software

project is its importance, or its perceived importance from the

high management. The second type of future event is the software

itself. Will the software be able to handle the user's

51

requirements of today and be able to expand or be modified easily

for the future? This phase is key if the software has been marked

for reusability.

10. Prepare Budgets

Budgets are the common thread for comparison in most

projects of any kind. A common denominator for all resources of

manpower, equipment, travel, or office space can be equated to a

dollar figure. The budget is the process of placing the dollar

value and constraints on the project. The software project manager

is responsible for dividing the appropriated funds available to all

of the software project areas.

11. Document Project Plans

In all the phases of project software management it is

important to record what decisions were made in documents.

Documentation is necessary for continuity in the absence of the

manager or any other key project member. The document project plan

is also critical for preparing the software project for other key

documents that will follow. Examples of key documents contained

within the document project plan are: quality assurance plans,

staffing plans, and configuration management plans. The project

plan is the means for the project software manager to interface

with outside organizations interacting with the project. The

project plan informs the outside organizations of what the project

software manager expects in terms of relationship and

responsibilities between the two.

52

C. ORGANIZING

Some of the major issues for software management organizing

can be summarized as follows:

* Difficulties in determining best organizational structure for
project

* Undefined or unclear responsibilities for project activities

* Conflict between individual staff and software functional
organizations (Thayer, 1988, p. 26)

1. Types of Organizations

The organizing phase in software management can help make

the project run smoothly. It is an administrative link that lays

the foundations for the chain of command and establishes the lines

of authority. The three basic organizations existing in software

project management are: functional, project, or matrix

organizations.

a. Functional Organizations

Functional organizations are best for adopting

highly specialized and very skilled software programmers, because

the programmers work in their area of expertise. Figure 4-1

depicts what a functional organization employee chart would look.

53

Top Management

L L.isim'

Figure 4-1. Tasks and Lines of Authority of Software
Development Functional Organizations Used to Develop a Project
(Thayer, 1988, p. 29)

Table 4-9 illustrates the strengths and weaknesses of the

functional organization (Thayer, 1988, p. 32).

TABLE 4-9. STRENGTHS AND WEAKNESSES OF THE FUNCTIONAL ORGANIZATION

STRENGTHS WEAKNES SES

Organization already in existence No one person has complete

(quick start-up and phase-down), responsibility or authority for

the project

Recruiting, training, and Interface problems are difficult
retention of people is easier. to solve.
(functional projects are people-

oriented) __________________

Standard, techniques, and methods Projects are difficult to monitor
are already established, and control.

54

(Tayr 198 p.29

b. Project Organizationa

Project organizations are considered ideal for large

software projects, due to the centralized control by one person the

software project manager. Figure 4-2 depicts what a project

organization employee chart would look.

Top Management

Eniee. Software

Pigure 4-2. Tasks and Lines of Authority of Project
Organization Used to Develop a Project (Thayer, 1988, p. 30)

55

Table 4-10 illustrates the strengths and weaknesses

of the project organization (Thayer, 1988, p. 32).

TABLE 4-10. STRENGTHS AND WEAKNESSES OF THE PROJECT ORGANIZATION

STRENGTHS WEAKNESSES

There is a central position of Organization must be formed.
responsibility and authority for
the project.

One person has authority over all Recruiting, training, and
system interfaces, retention of people is more

difficult (projects are product-
oriented).

Decisions can be made quickly. Economy of scale cannot be
achieved.

Staff motivation is typically Projects tend to perpetuate
high. themselves.

Standards, techniques, and
procedures must be developed (no
commonality between projects).

c. Matrix Organizations

Matrix organizations are considered the best

compromise between project and functional organizations. Figure

4-3 depicts what a matrix organization employee chart would look.

56

VI

an t U ase s evilop Sa Proe Ty 19 p 3

To 57o _

Inif- E 1' 1,i I 7 ua 01 M 2, m

Fiur 43.Tt a sks anMLnsnfauhoitg feati
OrganiationUsed t Deveop a Poject(Thay rm, 18,p 1

Pro57

Table 4-11 illustrates the strengths and weaknesses

of the matrix organization (Thayer, 1988, p. 32).

TABLE 4-11. STRENGTHS AND WEAKNESSES OF THE MATRIX ORGANIZATION

STRENGTHS WEAKNESSES

Improved central position of Responsibility and authority is
responsibility and authority (over shared between two or more
functional project). managers (unlike project

organization).

Interfaces between functions can Control or responsibility for
be controlled more easily (than in resources (people) is shared
functional project). between two or more managers

(unlike project or functional
organization).

Recruiting, training, and Too easy to move people from one
retention are easier (than in organization to another (unlike
project organization) project or functional

organization)

Easier to start and end the Greater organizational
project (than in project documentation is required (than in
organization). project or functional

organization).

Standards, techniques, and Greater competition for resources
procedures already established (than in project or functional
(unlike project organization). organization).

Better and more flexible use of
people (unlike project or
functional organization).

Organizing activities and tasks are created to help

relieve the difficulties and problems associated with the major

issues mentioned earlier. The detailed steps and activities for

organizing are:

2. identify and Group Required Tasks

The software project manager must first identify the

tasks that need to be done. This procedure can be done by using a

work breakdown structure, where the tasks are identified and then

grouped in common functional areas. The groupings can be placed in

58

areas like software system programming, software testing... etc The

software project manager must not only group the tasks from inside

the realm of the software project but also outside where

interactions occur.

3. Select and Establish Organizational Structures

A selection of the three general types of project

organizations identified earlier must be chosen, after the tasks

have been identified and grouped by functional or areas of

responsibilities. The strengths and weaknesses should be

considered as a means of keeping the organizational structure in

line with the software project goals and type of project is being

developed.

4. Create Organizational Positions

The organizational structure is basically the shell. The

positions that go into the shell will add the definition and meat

to the organization. Examples of some common types of positions

and their job description are as follows:

" Project managers - responsible for system development and
implementation within major functional areas. Direct the
efforts of software engineers, analysts, programmers, and
other project personnel.

" Software engineers - design and develop software to drive
computer systems. Develop firmware, drivers, specialized
software such as graphics, communications controllers,
operating systems and user friendly interfaces. Work closely
with hardware engineers and applications and systems
programmers, requiring understanding of all aspects of the
product.

59

* Scientific/Engineering programmers, programmer-analysts -

perform detailed program design, coding, testing, debugging,
documentation and implementation of scientific/engineering
computer applications and other applications that are
mathematical in nature. May assist in overall system
specification and design. (Thayer, 1988, pp. 33, 34)

5. Define Responsibilities and Authority

Defining responsibilities is important because it helps

prevent items from dropping through the cracks (meaning no one was

doing that task). Responsibility definition should also reduce

confusion of which section in the orgai zation is doing what work

for whom. The definition of authority is the way to provide lines

of authority. Lines of authority are ways of detailing what tasks

has precedence over other tasks. An example may be that it is

decided that the software analysis phase has authority over the

software design phase.

6. Establish Position Qualifications

Once the organizational positions have been created and

their job description identified; it is necessary to define the

type of qualified person. The following are examples of the

previously identified organizational position titles and their job

qualifications:

" Project managers - background in successful systems
implementation, advanced industrial knowledge, awareness of
current computer technology, intimate understanding of user
operations and problems, and proven management ability.
Minimum requirements are four years of significant system
development and project management experience.

" Software engineers - four years experience in aerospace
applications designing real-time control systems for embedded
computers. Experience with Ada preferred. B.S. in Computer
Science, Engineering, or related discipline.

60

* Scientific/Engineering programmers, programmer-analysts -
three years experience in programming aerospace applications,
control systems, and/or graphics. One year minimum with
FORTRAN, Assembler, of C programming languages. Large-scale
or mini/micro hardware exposure and system software
programming experience desired. Minimum requirements include
undergraduate engineering or math degree. (Thayer, 1988, p.
34)

7. Staff Positions

Staffing positions is a major effort of the organization

phase of software project management. Staffing requires the choice

of filling the position from within the organization or hiring off

the street (outside the organization). Hiring standards must be

set and applied. Training and education of employees may be

necessary to assimilate them into a productive worker on the

software project team. Also, a means for development in the areas

of professional knowledge and skills must be planned for after the

employee has been hired. Finally, a means of evaluating and

appraising personnel is needed in conjunction with a reward or

disciplinary actions.

8. Document Organizational Structures

Again the importance of documenting comes up in every

phase of the software project management. The type of organization

chosen and reasons for the decision should be recorded. Other

items worth documenting are the lines of authority, tasks,

responsibilities, descriptions, and qualifications for the

positions created should be included in an organizational plan.

61

D. DIRECTING

Some of the major issues for software management directing can

be summarized as follows:

" Communications barriers between key organizations involved in
the software project

" Lack of motivation or fears of change by trying new methods

" Ways of motivating software development staff have not been
put into action (Thayer, 1988, p. 38).

The directing phase in software management is the one-on-one

interface with management and the workers. Its the personal touch

of leading and motivating people to reach their potential. Proper

directing can create a synergism providing more or better quality

work from the employees then thought possible. Directing

activities and tasks are created to help relieve the difficulties

and problems associated with the major issues above. The detailed

steps and activities for directing are as follows:

1. Provide Leadership

An effective manager uses leadership in addition to using

management tools to be successful. Managers are very important in

today's society. Many important issues and values are derived from

society. Managers use values from personal experience and expand

on them, with the coordination of the company atmosphere.

The management process has responsibilities to society,

the company and the subordinate worker. The manager must be loyal

to the organization's goals/missions but yet stay within boundaries

placed on the organization, by higher authorities, society and the

individual needs of the workers. The manager must help the

62

organization survive and prosper, because if the organization

fails, both society and the employees suffer. Managers are the

activating element needed to plan the companies objectives and then

achieve them on time. The tools needed to obtain objectives for

management are found within the components of the management

process.

The software project manager must provide leadership and

direction to the team. There are two general types of power that

the software project manager (the leader) can display. They can be

classified as positional power and personal power. As one could

guess, positional power is granted by a person's position or job in

relation to others (subordinates). Positional power is the type of

power all bosses have over subordinates and is inherited by job

uescription. The second type of power (personal) has nothing to do

with what job the person has, but instead what the person

himself/herself is like. Any person (boss or subordinate) can have

personal power. In fact; a conflict my arise when the boss who has

positional power has a run in with the subordinate who has personal

power. A power struggle can occur between the two and disrupt the

harmony of the organization. Therefore, a software project

manager (the leader by job description) will have positional power

and may have the second type of power (personal) . Why is the

discussion of power important? It is the acquisition of power that

gives the leader the capability to rule or lead the subordinates.

The job of the leader is to interpret the plans and requirements

and communicate those ideas to the employees to ensure the

63

obtainment of a common goal and the objectives for the software

project. (Newman, Kirby, and Schnee, 1982, pp. 386-390)

Managers have to deal directly with people very often.

The management element that deals mostly with people (the number

one resource of any manager) is the directing element. A

definition of leadership is as follows: the ability of one person

to influence the behavior of another toward the accomplishment of

certain goals. Competition is so keen between organizations today,

and that is what breeds the growth of leadership.

The four elements of leadership are; implementing,

directing, communicating, and coordinating, a) Implementing is

the element that gets actions started. b) The directing element

is concerned with giving orders. This element assists the

implementing element to arrive at the desired set of goals. c)

Communication is the transfer of information, ideas, understanding,

or feelings between people. The leader must communicate his/hers

orders clearly, and concisely, so the workers understand and can

carry them out. d) Coordination is the element of leadership that

pulls everything together. The coordination element makes sure

everyone is informed before key actions are implemented and the

desired goals completed.

Leadership is a very important aspect of managing

(contained within the directing element of management). To be an

effective manager, one needs to be able to be a good leader. One

must be able to motivate workers through leadership. The manager

must be able to communicate clearly and concisely to his/her

64

employees. To induce job satisfaction and innovation the manager

must insure a feeling of confidence and pride into the employee

through communication and leadership. The manager must coordinate

with key personnel within and outside the organization to ensure

organizational goals are achieved. All the elements (implementing,

directing, communicating and coordinating) of leadership are

important and necessary for today's manager. (Putnam, 1987)

Four general styles of leadership can be identified as a

leader who delegates, participates, sells or, tells subordinates

what to do. The four styles are used under different conditions.

A software project manager can be one or any combination of these

four different styles of leading depending on the situation.

Therefore the term "situational leadership" (Hersey and Blanchard,

1982, p. 150) is utilized here. One factor of the employee's

maturity level should be taken in consideration when a software

project manager is examining the proper situational leadership

style he/she should use. Figure 4-4 illustrates all pertinent

criteria and gives the reader the ability to extract the proper

leadership style when he/she knows the maturity level of workers.

65

STYLE OF LEADER
S, Hig High Task

_ Relaorshp, i and
and iHigh

Lo, Task 'Relabonship

c S3 S2 '"0.

MATU LOW High Task W
Re4abonstW and

and LOW I
Low Task Relahonsty -

(LOW) - TASK BEHAVIOR so---- (HIGH)

HIGHE LOW

~1 4 M3 M2 [M1 I

MATURITY OF FOLLOWER(S)

Vigure 4-4. Situational Leadership
(Hersey and Blanchard, 1982, p. 152)

Figure 4-4 can be a little intimidating, when one first

looks at the situational leadership styles, but it is not too

complicated. Basically, the figure shows the direct effect for

choosing proper leadership style when one considers the employees

maturity level. For example the low maturity level employee (Ml in

Figure 4-4) requires a response of an S1 leadership style (telling

66

leader). Figure 4-4 then lets the leader know that a telling

leader has to give a lot of tasks to the employee, but needs to

have a low relationship level (meaning not explaining the tasks)

with the employee. Table 4-12 helps explain when which leadership

style should be used for each maturity level. The table is a

supplement to ensure the reader understands the situational

leadership figure. (Hersey and Blanchard, 1988, p. 154)

TABLE 4-12. MATURITY LEVEL VERSUS LEADERSHIP STYLE

MATURITY LEVEL APPROPRIATE STYLE

M1 Si
Low Maturity Telling
Employee unable and unwilling or High task and low relationship
insecure behavior

M2 S2
Low to Moderate Maturity Selling
Employee unable but willing or High task and high relationship
confident behavior

M3 S3
Moderate to High Maturity Participating
Employee able but unwilling or High relationship and low task
insecure behavior

M4 S4
High Maturity Delegating
Employee able/competent and Low relationship and low task
willing/confident behavior

The four leadership styles of telling, selling,

participating and delegating are described in the following

paragraphs (Hersey and Blanchard, 1988, p. 154):

a. Tolling Situational Loadzehip Style

The telling leader is dealing with employees of low

maturity levels. The low maturity level can be due to the fact of

an employee's inability to perform the work at hand or that the

employee is insecure. The type of employee that is both unable and

67

unwilling to do the work is typical for the telling situational

leadership style. Therefore, the leader needs to tell the employee

what, how, when, and where to do the work. The leader is not able

to have a high level of interaction for support of the employee,

because this may be seen as rewarding poor performance or the

leader is permissive and weak.

b. Selling Situational Leadership Style

The selling leader is dealing with employees of

moderate maturity levels. The moderate maturity level is due to

the employee being willing to perform the tasks and is confident in

his ability, but lack the skills. Therefore, the leader interacts

often with these types of employees providing direction and also

supportive behavior. In this way he is able to reinforce and give

feedback, to allow learning and growth in enthusiasm. A type of

two way communications happens between the leader and the follower

giving an appearance that the leader is convincing or selling the

tasks to the employee.

C. Participating Situational Leadership Style

The participating leader deals with employees who

also have a moderate maturity level. However, unlike the selling

leader's employees, the participating leader's employees are able

but unwilling to do the work. The workers unwillingness to do the

work is due to their lack of confidence or insecurity. This type

of worker therefore needs motivation (high relationship between the

leader and the employee) to get the work done and a two way

communication and explanation to see how he/she is doing. The

68

leader shares in the decision making process with the employee,

thus the term participative leadership style.

d. Delegating Situational Leadership Style

The best type of leader is the delegating leader.

The employees that deserve this style of leadership are both able

and willing to do the work and handle the responsibility. The

employee needs little (low relationship between the leader and the

employee) help or communications. The employee is told what needs

to be accomplished and he/she alone decides how, when, and where to

do the task.

2. Supervise Personnel

If leading can be thought of as long term or strategic

directing; then supervising can be related to short term or

tactical directing. The software project manager must guide and

keep track of the employees on a day-to-day basis. Supervision

allows the software project manager to assure the employees are

doing their assigned duties as well as provide guidance as well as

discipline as necessary.

3. Delegate Authority

To free time and effort of the software project manager

it may be necessary to delegate the work load and the authority

along with it. However, one must realize that delegated authority

does not relieve the software project manager (the delegator) from

his/hers responsibility. A good manager will delegate authority

down to the lowest employee level responsible effort to handle the

tasks.

69

4. Motivate Personnel

An important aspect of directing is to motivate the

workers. Motivation can help workers not only get their job done,

but to achieve the highest level of performance from them in the

process. Table 4-13 illustrates the most common motivational

psychologist theories used today and a brief explanation (Thayer,

1988, p. 41):

70

TABLE 4-13. DEFINITIONS OF MOTIVATIONAL MODELS

MOTIVATION MODEL DEFINITION OR EXPLANATION

Frederick Taylor Workers will respond to an
incentive wage.

Elton Mayo Interpersonal (group) values were
superior to individual values.
Personnel will respond to group
pressure.

Kurt Lewin Group forces can overcome the
interest of an individual.

Douglas McGregor Managers must understand the
nature of man in order to be able
to motivate him.

A.H. Maslow Human needs can be classified.
Satisfied needs are not
motivators.

Frederick Herzberg A decrease in environment factors
is dissatisfying; an increase in
environment factors is not
satisfying. A decrease in job
content factors is not
dissatisfying; an increase in job
content factors is satisfying.

Chris Argyris The greater the disparity between
company needs and individual needs
the greater the dissatisfaction of
the employee.

Rensis Likert Participative management is
essential to personal motivation.

Arch Patton Executives are motivated by the
challenge in work, status, the
urge to achieve leadership, the
lash of competition, fear, and
money.

Theory Z A combination American and
Japanese management styles.
People need goals and objectives,
otherwise they can easily impede
their own progress and the
progress of their company (Ouchi,
1981).

Quality circles Employees meet periodically in
small groups to develop
suggestions for quality and
productivity improvements.

Most software engineering personnel are well paid, work in
pleasant surroundings, and are reasonably satisfied with their
position in life. Therefore, in accordance with Maslow's

71

hierarchy of unfulfilled needs, the average software engineer
is high on the ladder of satisfied need. Most software
engineers are at the 'esteem and recognition' level and are
occasionally reaching to the 'self-actualization' level.
Thus, one of the issues that management is facing today is the
question of what it takes to motivate software engineers into
producing more and better software (called software psychology
in some circles), since money alone doesn't seem to do it.
(Thayer, 1988, p. 39)

5. Resolve Conflicts

The software project manager can't be the expert in all

areas of the project, but does have to apply good judgement at

times. Software projects will not always go according to plan and

will have its share of rough times. The software project manager

will need to resolve conflicts between personnel or project

decisions during rough times. The manager also has to be aware of

any conflicts of himself/herself if power struggles or personality

conflicts arise.

6. Manage Changes

Many items can and will change in a software development

project. Examples of items that may change throu-gh the software

life cycle are: people, user's requirements, software design, and

the hardware for which the software is being written. It is

impossible to stop or prevent all changes so the software project

manager must learn to manage changes. A simple plan is written to

handle one type of change. The change involving a new software

development technology (a change) can be handled by following these

steps:

" Explain the risks and benefits of the new technology.

" Provide training for the project team.

72

& Prototype the technique before it is used.

e Provide technical support throughout the project.

* Listen to the users' concerns and problems.

* Avoid concentrating on the technology at the expense of the
project. (Thayer, 1988, p. 43)

7. Document Directing Decisions

The importance of documenting comes up in every phase of

the software project management. The type of directing decisions

and reasons for the decision should be recorded. Other items worth

documenting are all tasks, assignments of authority, and any

conflicts with their resolutions.

3. CONTROLLING

Some of the major issues for software management controlling

can be summarized as follows:

* Software project control relies to often on budget
expenditures for software schedule.

" Standards for software development are not written or not
enforced.

* Measures of software quality referred to as software metrics
are not used often enough (Thayer, 1988, p. 43).

The controlling phase in software management is the phase to

monitor and make corrections to areas of budget and schedule. It is

the area where predicted project performance is compared to actual

project performance. Any disparities in the estimated and actual

performance must be reviewed to determine if any action should be

taken either rewarding or disciplinary.

73

ERRORIPROSLEM REPORTS AND CHANGE RE0UESTS

CUSTOMER REUESTS REJECTED
POR CAS DO ESVELOPENT POUC

J INTERMED.ATE

CUSTOMERDEVELOPMENT PRODUCTS

MAGEMENT IGMNSDEVELOMN SYSTEM MNGMN

"IGNEWLEVEL
POUT

MANAGEMENT

-- J STANOAMOS ANDI.

REPON. TO HKINEEWE ~f
MAGEMENT AND

CUSTOER

STATUS AND PROGRESS REPORTS

Figure 4-5. Basic Operation of a Project Control System (Rook,
1986, p. 109)

The main points that needs to be made about Figure 4-5 is the

interrelationship of project management, and the iterative/feedback

method of control. The project management box has five inputs and

three outputs when considering the project control system. The

inputs on the left side of the box are the taskings or

requirements. The three specific items are the original customers

requirements, any changes to the requirements (customer requests

for changes) and the directives from higher management in terms of

policies and procedures. The other two inputs are the

interactive/feedback portion from the error/problem reports, and

status/progress reports. The feedback is a very important item in

74

the control process. It lets the software project manager know if

he/she has control of the project and the results of any

corrections made. Without the iterative/feedback loop the software

manager is unable to learn from the results; if corrections actions

were determined, or to just monitor the status of the project.

The outputs of the project management box are: reports to

higher management, and work assignments. The reports to higher

management are the means by which the software project manager

provides an interactive/feedback loop. The higher management can

see how well or poorly the software project is progressing and

determine if involvement is necessary. The other outputs (two work

assignments) on the right side of project management box are the

processed output of the project management functions of planning,

organizing, directing, and controlling (the phase presently in).

The processed requirements combined with higher-level management

directives produce the work assignments that must adhere to

standards and procedures (the dotted line means monitoring

involvement unless otherwise needed) during the development cycle.

The development software life cycle (system engineering, analysis,

design, code, testing, and maintenance) was described in the

previous chapter and is contained in the technical development box

in Figure 4-5. Finally, to produce the end products (goals, and

objectives of the project) and ongoing quality assurance and

configuration management control must be applied.

Some of the same tools and techniques for scheduling and cost

estimation described in the planning phase of this chapter are used

75

in the control phase of software project management. A strong and

well thought out planning and controlling phases are key to keep

costs under budget and the schedule on time. Proper software

project controlling entails discovering problems or variations from

plans early to allow necessary corrections to be made. Controlling

activities and tasks are created to help relieve the difficulties

and problems associated with the major issues above. The detailed

steps and activities for controlling are (Thayer, 1988, pp. 44-47):

1. Dovelop Standards of Performance

The initial step for controlling is to develop items to

measure the project against to monitor the progression of the

software project. These items to measure progress are called

standards. Standards can be a detailed extension of the goals and

objectives in the planning phase of project management. Software

standards can be either process or product types. Some types of

process attributes that standards are developed for are call

quality metrics. Examples of quality metrics are: software

reliability, portability, and usability to name a few. The

standards developed for products are applied to the software

deliverables. Examples of software deliverables are: a

feasibility assessment study, a requirements specifications

document, and a design plan to name a few. The standards can be

developed for the individual software project or may be adopted

from the organization's standards or be outside organizational

standards (Institute of Electrical and Electronic Engineers (IEEE)

for example).

76

2. Establish Monitoring Techniques and Reporting Systeas

Monitoring progress of the software project is the next

step once the standards are developed or adopted. Monitoring

techniques provide feedback to the software project manager which

indicates the need for corrective actions or not. Also the project

manager must have a way to receive the information from the

monitoring techniques to review and inform the progress of the

project up the chain of command. Establishing the monitoring

techniques and reporting systems are the foundations for the next

two steps of measuring the results and taking corrective actions in

necessary. Types of monitoring techniques are the same ones as

identified in the planning phase for project management tools and

are as follows: milestone chart, full wall scheduling, PERT, Gantt

chart, CPM, COCOMO. One of the benefits of these techniques are to

allow the project manager to use during various phases of the

project development. Examples of the types of reports that would

be used in the software project are given in Table 4-14:

77

TABLE 4-14. TYPES OF SOFTWARE PROJECT REPORTS

TYPE OF REPORTS DEFINITION OR EXPLANATION

Budget Compare budget with expenditures
and provide for making new budget
estimates.

Schedule Provide status of schedule and
milestones completed.

Man-hour by activity Provide a report on the number of
staff hours that nave been worked
on a given activity.

Man-day by task reports Provide the number of days
assigned to a given task. A task
may or may not be larger than an
activity.

Milestone due or overdue Provide a status of the milestones
that have been accomplished or
have been missed and the reason
for missing the milestone.

Project progress A free-flowing narrative report
indicating the status of progress
or a list of activities
accomplished.

Activity reports Provide, typically over a period
of time, what activities have been
accomplished.

Trend charts Show trends in such areas as
budget, number of errors found in
the system, manhours of sick
leave, and so on. Trend reports
are used to predict the future.

Significant change A general change report indicating
exceptions to the plan and
significant changes both good and
bad. However, it normally shows a
loss of progress.

3. Measure Results

The software project measurements can be made and

compared to the desired specifications or level of work. The

measurements are made to either the process by using the project

management tools (PERT or CPM) or the product. Examples of

78

techniques to measure products of software development are: unit

development folders, walkthroughs or independent auditing. The

definitions follow:

" Unit Development Folders (UDF) - The UDF is a notebook kept by
the project manager containing items specific to the software
development of the project. The purpose of the UDF is to
provide an orderly fashion of development of a specific unit
or portion of the software product (e.g. design
specifications, preliminary design, and code).

" Walkthroughs - A walkthrough is an informal review of
software products (same type as an UDF) conducted by co-
workers. The purpose is to have an extra set of eyes or
inputs on what another person or group is doing and check any
potential problems early.

" Independent auditing - More formal than a walkthrough, because
it is done by an outside agency. The purpose is to determine
is the software is being developed in compliance with
requirements, policy and plans (Thayer, 1988, pp. 48, 49).

4. Initiate Corrective Actions

The project manager will decide if any corrective actions

are needed, once the measurements are made from the previous phase.

Once corrective action is taken to relieve the disparity from the

desired output; the important item then will be to again monitor

the results (feedback) to see if it worked. This in an iterative

process until the final output is satisfactory.

5. Reward and Discipline

It is important to reward or discipline as part of the

corrective process. This is the workers way of receiving feedback.

A worker will be unable to learn if he/she did a good or bad job

without feedback. A general rule is to reward in public and

79

discipline in private. A reward can be as simple as praise and a

pat on the back and discipline could be acknowledging the product

is not satisfactory and improvement should be made.

6. Document Controlling Methods

Documentation may be useful in this phase to produce a

"case book" way of developing software in successful projects.

The type of control techniques chosen and reasons for the decision

should be recorded. Other items worth documenting are the

progression of the project, problems and the corrective actions

taken.

80

V. STATE OF THE ART SOFTKARE DEVELOPMENT TECHNIQUES

A. INTRODUCTION

The two main topics of research in this thesis are software

life cycle development (secondary subject) and management of

software development (primary subject). Many techniques, methods

and procedures describing how to develop and manage software have

been presented thus far. This chapter will address more advanced

software life cycle and management techniques to accompany and

supplement those already discussed.

B. IMPROVEMENTS TO THE SOFTWARE LIFE CYCLE DEVELOPMENT

A key issue for software life cycle development pertains to

the effectiveness and usefulness of the deliverable end items of

each phase. The main phases of software life cycle development are

system engineering, analysis, design, code, testing and

maintenance. Each phase produces an end product needed by the next

phase. Unfortunately some end products are not of high enough

quality, or do not satisfy the requirements to help do the next

phase. The following techniques and technologies are illustrated

to help improve the effectiveness and usefulness during the

software life cycle development process. (Pressman, 1989, pp. 13-

16)

81

1. Computer Aided Software Engineering

Computer systems can be used to aid in the development of

software, as the name Computer Aided Software Engineering (CASE)

indicates. Software engineering consists of: software

development, project management, software metrics, and software

maintenance. A further explanation of software engineering will

follow in this chapter. The key item to understand is that CASE

can help the software project manager throughout the life cycle and

management of a software project. CASE consists of five

components: diagramming tools, a centralized information

repository, interface generators, code generators, and project

software management tools. The following is an explanation of the

five components: (Senn, 1989, pp. 260-264)

a. Diagramwing Toola

Diagramming tools support and document the analysis

phase of the software life cycle. The tools produce data flow

diagrams, and program structure charts. The main advantage is the

ease in changing the diagrams, charts, and documentation. CASE

takes the tedious and undesirable activities away from the software

developer during this phase.

b. Centralized Information Repository

The centralized information repository saves all

system information data from the software life cycle phases

supported by CASE. The information is also known as the data

dictionary. The dictionary contains details of system components

and the volume and frequency of each activity. The volumes and

82

frequencies can aid in software project management by analyzing

where resources are being used most. The repository also has

controls and safeguards to protect access and the integrity of the

information.

c. Interface Generators

The interface generators produce interfaces that may

be required by the end user to operate the software. The

generators also double as the vehicle to allow the software

developer users to employ the CASE tools. The generator can

produce prototypes of end user interfaces. Some examples of

interface prototypes are system menus, and screen presentations.

d. Code Generators

Code generators are the nucleus of CASE. Executable

code can be generated directly from the system specifications

portion of CASE. The nice feature of this component is the storing

of the code once it is developed in the centralize information

repository. The stored software can now be a candidate for reuse.

Furthermore, the system specifications are also stored if any

changes need to made. Approximately seventy-five percent of a

software project's code can be generated from CASE. Therefore, the

remaining twenty-five percent of the code still needs to be hand

written.

e. Project Software Management Tools

The previous four CASE components support the

software life cycle directly. This last CASE component supports

the management of software development. The software management

83

tools support the project manager by providing efficient and

effective assistance throughout the software development process.

The tool provides support in schedule monitoring to allow the

software manager proper use of the available resources. Finally,

the CASE management tool allows the software project manager the

capability of analyzing specific areas for trends and control

feedback. The software manager can personally select specifics of

people, department, or processes for example.

f. Integrating the Five CASE Componenta

The five components of CASE will not be effective if

not joined in a manageable fashion producing a whole system. The

consolidation of the CASE components are done by the integrating

tools. The integration can occur in three of the following ways.

" Creating uniform interfaces

* Providing transferable data upon the different components

" Linking the activities

CASE can be a very useful tool to the software

project manager. CASE efficiently produces documentation and code.

However, some issues need to be considered before CASE is used for

software development and project management. Table 5-0 illustrates

some of the strengths and weaknesses associated with CASE. (Senn,

1989, pp. 277 - 280]

84

TABLE 5-0. STRENGTHS AND WEAKNESSES OF CASE

CASE STRENGTHS CASE WEAKNESSES

Ease of revising system Relies on structured
description and graphic traditional software life
representation cycle development

methodologies

Facilitates system prototyping Absence of standards for
methodology support

Generates code Lack of standards for diagram
representation

Provides maintenance support Limited function - primarily
through storage in centralized supports one specific phase or
database method of software development

life cycle

Increases probability of Limited scope - virtually no
meeting users requirements analysis of applications of

requirements

2. Software Prototyping

a. Definition of Prototyping

A definition of prototyping can be found, if one

looks at the Greek derivation of the word "protos" which means

first and "tupos" which means model. Prototyping is the first

attempt to make a working mouel (usually scaled down in size and

complexity) of the system. Department of Defense software

development projects have written code on the premise of completing

the definition of all software functions first. However logical

this practice may sound, it does not account for the following

illogical reasoning. First, the English language is not a great

way of explaining technical software statements, especially when

accomplished by humans. Second, one can not forecast all the

85

problems that will be encountered when writing code. Finally, it

seems that software requirements are always in a state of change.

Therefore, it is necessary to consider the possibility of creating

code at a much early stage and in fact throughout the total

software development cycle.

b. Rapid Pzototyping

A version of prototyping which produces workable

models early and continuously throughout the software development

process is called rapid prototyping. Rapid prototyping accentuates

the ongoing development of system prototypes that meet the system

designers and end users requirements and provide appropriate cost-

performance trade-offs. Rapid prototyping requires heavy amounts

of software and hardware support, due to the speed of developing

models. Furthermore, this process requires continuous feedback

between the developer and the end user to increase the flow of

ideas which help reduce cost by improving performance or solving

problems. Figure 5-0 shows how rapid prototyping requires

development work in all phases of software development.

Military and civilian software is increasing in size

and complexity. Software development will take an enormous amount

of man-hours to accomplish in the future. The normal software

development approach of sequentially coding, compiling, integrating

and testing one phase at a time will have devastating effects on

the schedule. Rapid prototyping or something similar will be

necessary to produce the amounts of code required. This continuous

development during ongoing stages of the software development will

86

MISSION OPS SYSTEM INTERFACE MODULE
PROTOTYPING PROTOTYPING PROTOTYPING PROTOTYPI1IG

* SYSTEM DEVELOPMENT IS BEST ACCOMPLISHED THROUGH ITERATION

* PROTOTYPING ASSISTS IN ALL PHASES OF THE DEVELOPMENT PROCESS

* PROTOTYPING IMPROVES INTERPRETATION OF DEFINITIONS AND USABILITY OF
RESULTING SYSTEM

s PROTOTYPING REVEALS PROBLEMS AND INSPIRES INVENTIONS THAT ARE UNLIKELY
TO BE DISCERNED WITHOUT WRITING CODE

Figure 5-0. Rapid Prototyping Concept (Ginn, 1987, p. VO)

help avert the programmer from writing incorrect code. Rapid

prototyping will provide an immediate acknowledgement that the

statement is in error. The speed and efficiency of producing

software increases when rapid prototyping is combined with

graphical interface tools to allow a true user friendly working

environment. Rapid prototyping is designed to be an iterative

process being able to cope with change and levelop software to

respond quickly and efficiently. Also, rapid prototyping

techniques can be used to help catch defects/errors early in the

software development cycle. Finally, the technique can generate

the software for upgrading and modifying the system continually

through its life cycle. (Ginn, 1987, pp. 68-701

87

C. IMPROVZMENTS TO THE M OF SOFTNARE DEVELOPMENT

The management of software development needs to have a broad

systems approach. The manager needs to beware of all important

aspects of the software project, which not only include the

development, but is quality, usability, reliability, and risks

involved throughout the software's life cycle. The following

sections help pull together the management aspects of software

development.

1. Software Engineering Approach

The software engineering approach is akin to a systems

approach for software. Software engineering can be defined as:

The practical application of computer science, management, and
other sciences to the analysis, design, construction, and
maintenance of software and the documentation necessary to
use, operate, and maintain the delivered software system.
(Thayer, 1988, p. 55)

The approach pulls together four main areas to give a

synergistic effect. The four areas are: software development,

project management, software metrics, and software maintenance.

Each of these four areas are reviewed in the following sections.

a. Software Development

The Software life cycle was discussed in length in

chapter III. It consists of system engineering, analysis, design,

code, testing, and maintenance phases. The software development

procedure is similar except it does not have the maintenance phase

included. The software development portion of software engineering

actually produces the deliverables (end products of code, and

88

documentation). In software engineering software development would

be on the same level functionally as the other three areas (project

management, software metrics, and software maintenance).

b. Project Management

Project management was also discussed in great

length in chapter IV. Project management is composed of four

elements: planning, organizing, directing, and controlling. The

project management portion of software engineering provides the

tools and techniques to complete the software project on time and

under budget.

c. Software Metrics

Software metrics is a new research topic in this

thesis. Software metrics are measurements of certain properties of

the software's functionality, and physical aspects. Software

metrics can be used as a means to both measure the quality and to

control the productivity of software projects. Software metrics

can be used in various stages of software engineering. The four

classifications of software metrics are: development productivity,

project management, quality, and software development.

Three of the four metric classifications

(development productivity, project management, and software

development) deal with controlling the software project. The

fourth metric classification (quality) works directly with

improving software quality. The development productivity metric

controls a project's cost and manpower; the project management

metric tracks the progress of the software project; and the

89

software development metric monitors the software in the

development cycle.

Defects per 1,000 lines of code is what most people

would think is a good indicator of software quality. However, this

creates a software paradox. A paradox is a contradiction in terms.

Take for example the comparison of a software development of

functionally exact projects in three different programming

languages of APL, PL/I, and Assembler. The delivered programs

would all have the same functions but the sizes would vary because

APL is the highest order language (of the three) then PL/I and last

is Assembler. The higher level languages need less lines of source

code to produce, because more computer procedures can be given by

one line code compared to lower level languages. Table 5-1 shows

the relationship of lines of code needed in each language. The

table shows that defects would be the same in all areas of the

software life cycle except for the coding phase. The difference in

defects in the coding phase is due to the difference in sizes of

the developed source code.

TABLE 5-1. COMPARISON OF DEFECTS PER 1,000 LINES OF CODE

ASSEMBLER PL/I APL

DEFECT SOURCE

Requirements 500 500 500

Design 1,500 1,500 1,500

Coding 4,000 1,000 500

Documentation 1000 1000 1,000

Total defects 7,000 4,000 3,500

Source lines 100,000 25,000 10,000

Defects per 1,000 70 160 350
lines of code

90

The paradox occurs in this example of defects per

1,000 lines of source code, because the higher language software

(APL) may be considered a lower quality then the other two

software. Furthermore, the large difference in defects per 1,000

lines of code could lead one to incorrectly believe quality of the

Assembler language program was higher. Therefore improvements are

needed in measuring quality in software as well as in controlling

software projects. (Jones, 1986, p. 9)

Examples of the software quality metric factors

include the software's: flexibility, testability, reliability, and

reusability. The steps for using software metrics can be

summarized in the following manner. First, decide on the factors

that are important to the software project and its development.

Next, determine the criteria in which the measurements are to be

compared to. Then establish a way to measure the metrics, and

finally compare the two and see if any actions are needed.

(Ramamoorthy, Prakash, Tsai, and Usuda, p. 67)

d. Software Maintenance

Software maintenance, briefly discussed in chapter

III, encompasses more than just debugging or fixing errors in

software. Software maintenance needs to handle the modifications

and revision upgrades. Furthermore, the maintenance component must

provide for user request changes for the remaining life of the

software.

91

2. Risk Management

One way to improve the management of software development

is to reduce the risks involved. A software project manager would

be very content if he/she knew the critical risks in their project

and could plan to either eliminate, avoid, or at least reduce the

effects. The successful software project managers are good risk

managers.

Two primary steps of risk management are risk assessment

and risk control. Risk assessment involves knowing what the risks

are; understanding the effect on the software project; and ranking

the risk in order. Risk control deals with planning how to handle

the risks; taking action to prevent risks from occurring; and

monitoring the results. Software development projects have three

basic risk factors to contend with. The three factors of size,

structure, and technology. Three basic principles can be derived

from the basic risk factors. (1) The larger a software project

is; the higher the risk. (2) The higher the structure (well

defined) a software project is; the lower the risk. (3) The

higher the technology (more complex) that is supported by the

software; the higher the risk. The following is a step by step

method to develop a risk management plan. (Boehm, 1989, pp. 1-4)

a. Risk identification

A software manager must first be able to identify

all the possible major risks involved in their line of work.

Several ways of identifying risk for software development projects

exist. A simple, but yet effective way is checklists. The

92

software project manager uses checklists of common software risks

to see if they apply to his/her project. An example of the ten

most common software risk items and their appropriate technique to

control them are as follows in Table 5-2: (Boehm, 1989, p. 8)

TABLE 5-2. PROJECT RISK ITEMS AND SOLUTION TECHNIQUES

RISK ITEM RISK MANAGEMENT TECHNIQUES

1. Personnel shortfalls -Staffing with top talent; job
matching; team building; morale
building; cross-training; pre-
scheduling key people

2. Unrealistic schedules and budgets -Detailed multi-source cost &
schedule estimation; design to cost;
incremental development; software
reuse; requirements scrubbing

3. Developing the wrong software -Organization analysis; mission
functions analysis; ops-concept formulation;

user surveys; prototyping; early
users' manuals

4. Developing the wrong user interface -Prototyping; scenarios; task
analysis

5. Gold plating -Requirements scrubbing; prototyping;
cost-benefit analysis; design to cost

6. Continuing stream of requirements -High change threshold; information
changes hiding; incremental development

(defer changes to later increments)

7. Shortfalls in externally furnished -Inspections; reference checking;
components compatibility analysis

8. Shortfalls in externally performed -Reference checking; pre-award
tasks audits; award-fee contracts;

competitive design or prototyping;
team building

9. Real-time performance shortfalls -Simulation; modeling; prototyping;
instrumentation; tuning

10. Straining computer science -Technical analysis; cost-benefits
capabilities analysis; prototyping; reference

checking

93

b. Risk Analysis

Risk analysis involves looking closely at all the

risks identified for your software project. Two types of

techniques to do risk analysis are with models or analysis methods.

Examples or both are: performance and cost type models; and

network, decision, and quality factor analysis methods.

c. Risk Prioritization

The last phase in the primary risk assessment step

and involves ranking the risk in order of highest (most critical)

to lowest. The prioritization phase compares the results from the

analysis phase. One way of determine the prioritization of the

project risks is using the risk exposure method. This method is

basically finding the expected value of the possible risks using

the probability of risk occurrence multiplied the dollar amount for

lost. Finally, the expected values for each risk would be ranked.

d. Risk Managqmnt Planning

Risk management planning is the first phase in the

primary risk control step and involves planning to control the

risks. Some techniques for risk management planning are risk

reduction, risk transfer, and risk avoidance.

*. Riak Reaolution

Risk resolution put the risk management plan in

action. Two methods for this phase are simulations or prototypes.

Prototyping, discussed earlier in this chapter, involves applying

the risk plan on a scaled down version of the software development

project. Simulations are imitations or models that represent the

94

real world situation or problem. Therefore, the risk management

plan is applied to either the simulation or the prototype to

determine the effects of risk.

f. Risk Monitoring

The results of the risk management plan are

monitored in this phase. One method of risk monitoring is

milestone tracking. The manager observes the actual progress of a

software project and compares it to the risk management plan.

Next, reassessment of risk must be accomplished to identify and

analysis the risks remaining. The process is repeated, thus

corrective actions will be necessary if risks are identified.

3. New Software Acquisition Methodology For Military

The United States Department of Defense is the largest

user of computers and computer software in the world. The military

has needs of normal civilian type software for payrolls and

inventories to advanced software for real-time weapon systems, and

command, control, and communication systems. The military software

life cycle development was discussed in chapter III of the thesis.

The military software development follows the classical

software life cycle development. However, the military breaks down

each of the phases into smaller well defined and more strictly

controlled sections. Another main difference between the military

and civilian software is the degree of documentation. The military

has many specifications (Military Specifications (MilSpecs)) that

require large amounts of documentation. (Jones, 1986, pp. 124-126)

95

Methodical procedures for software development are

established for military software in regulation DOD-STD-2167A (as

discussed in chapter II). The regulation requires numerous

deliverable products, reviews, audits, and baselines. This process

basically reduces flexibility for software development by freezing

requirements at each stage. A software contractor can't go on to

the next phase until the previous one is completed. However, the

previous phases of software development are, modified, or

added/deleted if requirements change.

Development of software for large-scale real-time systems
generally has been a failure-prone activity. This
tendency can be traced t, both lack of control and lack of
flexibility. Failure to follow a rigorous software
engineering process results in a lack of control because
government and contractor management are uncertain that
the software effort is being directed toward the correct
problem. (Ginn, 1987, p. 76)

Therefore a methodology to allow more flexibility in

military software acquisition needs to occur. Other approaches or

supplements to DOD-STD-2167A for defense system software

development are being pursued to provide more flexibility in

software development. The following are examples: 1) Software

prototyping: Discussed previously in this chapter. 2) Risk-driven

approach: This approach takes the risk management plan, which is

also described in this chapter, and places it into effect. The

idea is to develop software with the least amount of risk involved.

The types of risks and the criteria developed are dependent on the

software project manager or by a future regulation for the

Department of Defense.

96

These two approaches will be able to provide flexibility

in the military software development cycle. However, it has not

been determined how the approaches might be joined together or with

the DOD-STD-2167A regulation. Furthermore, the other techniques

and methods covered in this chapter may lend credence that

improvements for future military software developments are

possible. (Ginn, 1987, pp. 76-78)

97

VI. SUMARY AMD CONCLUSIONS /RECOMMEDATIONS

A. SUMMARY

The primary objective of this thesis was to aid program

managers dealing with the development and management of computer

software for the military. The thesis was written for program

managers who aren't computor experts or don't have much experience

in the field. Therefore, the thesis will act as a lessons learned

and a how to paper.

Chapter I described the history and importance of the computer

and its software. Chapter II examined inherent common difficulties

with software development for civilian and military projects. Cost

over-runs and late schedules were the two main concerns researched.

Chapter III described the classical software life cycle. The life

cycle consisted of system engineering, analysis design, coding,

testing and maintenance. Chapter IV covered software project

management consisting of: planning, organizing, directing, and

controlling. Management of software development was the primary

theme of the thesis. Various comparisons and tables were made

showing how to select the proper scheduling technique. Several

cost estimating methods were also discussed. Chapter V gave

examples of state of the art methods to aid the software project

manager. Two general types of methods researched were areas to

support software development and project management.

98

B. CONCLUSIONS/RECOMlENDATIONS

1. General

* Problems exist in developing software under budget and on
time.

" Software development and management have many associated
difficulties and risks involved.

" Many scheduling and cost estimating techniques exist, due to
great variations in software projects.

" No one scheduling technique is best for all varying software
projects.

" Proper aids in software development and software management
can help reduce cost over-runs and la-e projects.

" Use of state of the art methods can aid the software project
managers in software development and management.

" Proper software development, effective project management and
the methods discussed should help reduce the numbers of cost
over-runs and late software projects.

2. Primary Importance of Software Development

" System engineering and analysis design are the most important
aspects of software development components (system
engineering, analysis design, code, and test)

a. Keys to System Engineering and Analysis Design

* An understanding of the entire system and the relationship of
its parts.

" Proper definition and decomposition of the system.

* Good documenting of diagrams and charts to explaining the
system will aid phases of coding, and testing.

3. Primary Importance of Software Management

" Planning and controlling are the most important aspects of
software project management components (planning, organizing,
directing, and controlling).

99

a. Keys to Planning

" The examination of the possible scheduling techniques to
tailor fit your software project is necessary.

" Use table 4-5 (SELECTING A SCHEDULING TECHNIQUE) in chapter IV
as a guide. The table listed most of the project scheduling
techniques with criteria to help aid the project manager
choose.

" Intermediate COCOMO was presented for cost estimating, but
different COCOMO models exist for varying amounta of detailed
desired.

* COCOMO can be used for sensitivity analysis. Sensitivity
analysis can show the effects on time and money to the
software project, by changing one of the 15 cost drivers at a
time and reviewing the results.

* Risk management should be a key concern to the software
project manager. Table 5-2 (PROJECT RISK ITEMS AND SOLUTION
TECHNIQUES) in chapter V should be used when developing a risk
management plan.

b. Keys to Controlling

" Good planning is essential to controlling. Planning
techniques for scheduling, cost estimating and risk managing
apply in the controlling component of software management.

" Metrics are very productive in aiding the software manager'3
goal of produce quality software on time, within budget, and
satisfying requirements.

* Be aware that controlling is an iterative process were
monitoring and feedback apply. The manager must examine the
results of corrective actions to determine if more are
necessary.

4. Overlooked Aspect of Software Management

* Directing is often perceived as unimportant, due to the image
of low returns from effort exerted. Many project managers may
get heavily involved in planning and controlling the project,
while not motivating or leading the workers.

" Worker dissention or lack of motivation in some cases can be
as detrimental as poor planning and control.

100

a. Keys to Directing

* The key to directing is the use of the proper situational
leadership style (telling, selling, participating, and
delegating).

" Use figure 4-4 (Situational Leadership) and table 4-12
(MATURITY LEVEL VERSUS LEADERSHIP STYLE) in chapter IV as
reference material to aid in selection of leadership styles.

" Motivating people is essential for top performance from them.

" Use table 4-13 (DEFINITIONS OF MOTIVATIONAL MODELS) in chapter
IV as a guide to choose the best motivation model for any
situation.

5. Checklist to Aid Software Management

The following is a checklist design to help the software

project manager. The checklist will aid in getting started in the

management of the project, by forcing the manager to answer the

critical questions or addressing the areas in the four components

of management.

Plannina

1) What are the software project's objectives and goals?

2) What are the organization or top management strategies for
achieving project objectives and goals?

3) Do the project's objectives and goals match or are in concert
with the organization's? If not, a realignment of project
objectives and goals may be necessary.

4) What are the more detailed policies of the organization for
software development and project management? Can they be adopted
to accomplish your software project? If not, then development of
new policies may be necessary.

5) What are the courses of action that can be taken to accomplish
your software project?

6) Which is the best course of action to take?

101

7) What are the organization's procedures and rules for software
development? Can they be adopted to accomplish your software
project? If not, then new procedures and rules may have to be
created.

8) What resources do you need? What resources do you have? What
are the risks for the software project? Develop programs to use
and measure resources and avoid risks.

9) What does the future environment look like in terms of your
software project and the use of its resources?

10) What is the budget for your software project? One needs to be
prepared.

11) Document the work done in the planning phase.

OrganizinQ

1) What are the tasks to accomplish the software project? Group
tasks into common areas (partitioning)

2) What are the organizational structures needed to accomplish
your software project? Identify the staff organizational, project,
and team structures. Identify and establish the relationships
between project users and developers.

3) What are the duties and relationships for the organizational
structures?

4) What are the responsibilities and authorities of the
organizational structures?

5) What are the qualifications needed to fill the positions
established by the organizational structures?

6) Document the work done in the organizing phase.

Directina

1) What type of leadership style are you more closely related to?
What are your strengths and weakness as a leader? Provide
leadership by matching personnel goals to project goals.

2) What type of day to day instructions are needed? Provide the
determined type of supervision.

3) What work can be delegated? Delegate to the lowest employee
level possible that can handle the work.

102

4) Identify how you can motivate your workers to perform to their
highest levels? Motivate your workers.

5) What work and efforts needs to be coordinated and by whom?
Coordinate with the appropriate people and staff.

6) Identify any conflicts between project personnel and outside
sections. Resolve conflicts.

7) What can be done to allow innovation and independent thought to
improve software management? Allow and review innovative thoughts.

8) Document the work done in the directing phase.

Controlling

1) What are your standards of performance for your software
project (including software quality assurance methods)?

2) What methods or software tools are preferred in monitoring
progress of the project?

3) What items should be measured to best monitor progress?
Measure those items.

4) Are the measured items behind planned projections? If so,
corrective action are necessary and discipline actions maybe
required. If not, corrective action are not necessary and reward
actions maybe required.

5) Document the work done in the controlling phase.

103

LIST OF RZEZRNCES

Abdel-Hamid, Tarek, "Software Engineering and
Management," Monterey, California, 1990. Lecture
presented at the Naval Postgraduate School.

Boehm, Barry W., "Software Risk Management: Principles
and Practices (Video Notes)," IEEE Computer Society
Press, 1989.

Boehm, Barry W., "Software Engineering Economics," IEEE
Computer Society Press 1984.

Congress of the United States, Office of Technology
Assessment, SDI Technology Survivability and Software,
May 1988.

DOD-STD-2167A (Department of Defense), Military Standard:
Defense System Software Development, 29 February, 1988.

Donohue, Kent A. Cori, and Associates Inc., "Fundamentals
of Master Scheduling for the Project Manager," Project
Management Journal, June 1985.

Ginn, Terry, Chairman of "AFCEA SDI BM/C3 Technology
Study," Phase I, August 1987.

Hersey, Paul and Blanchard, Kenneth H., Management of
Organizational Behavior: Utilizing Human Resources,
Prentice-Hall Inc, 1982.

Jones, Capers, Programming Productivity, McGraw-Hill Book
Company, 1986.

Jones, Carl R., "C3 Systems: Structure, Process and
Dynamics," Monterey, California, 1990. Lecture presented
at the Naval Postgraduate School.

Kitfield, James, "Is Software DOD's Achilles' Heel?,"
Military Forum, July 1989.

Markland, Robert E., and Sweigart, James R., Quantitative
Methods: Applications to Managerial Decision Making, John
Wiley & Sons, 1987.

Newman, William H., Warren, E. Kirby, and Schnee, Jerome
E., The Process of Management 5th Edition, Prentice-Hall,
Inc, 1982.

Pressman, Roger S., Software Engineering: A Beginner's
Guide, McGraw-Hill Company, 1989.

104

Putnam, Lawrence E., "Engineering Administration,"
Hampton, Virginia, 1987. Lecture presented at the
Langley-NASA facilities.

Ramamoorthy, C.V., Prakash, A., Tsai, W., Usuda Y.,
"Software Engineering: Problems and Perspectives," IEEE
Computer Society Press, 1984.

Report of the Defense Science Board Task Force on
Military Software, Office of the Under Secretary of
Defense for Acquisition, September 1987.

Rook, Paul, "Controlling Software Projects," Software
Engineering Journal, January, 1986.

Schlender, Brenton R., "How to Break the Software
Logjam," Fortune Magazine, September 25, 1989.

Senn, James A., Analysis & Design of Information Systems,
McGraw-Hill, 1989.

Stevens, Louis D., "Computing Devices and Systems,"
Monterey, California, 1989. Lecture presented at the
Naval Postgraduate School.

Thayer, Richard H., "Software Engineering Project
Management a Top-down View," Computer Society Press of
the IEEE, 1988.

Weik, Martin H., Communications Standard Dictionary, Von
Norstrand Reinhold Company Inc, 1983.

Witten, Bentley, and Barlow, System Analysis and Design
Methods, Irwin 1989.

Wulforst, Harry, Breakthrough to the Computer Age,
Library of Congress Cataloging in Publication Data, 1982.

105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. AFIT/CIRK 2
Wright-Patterson AFB, Ohio 45433-6583

3. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

4. Prof. Tarek Abdel-Hamid Code AS/Ha 2
Naval Postgraduate School
Monterey, California 93943

5. Prof. Donald A. Lacer 2
5621 Sunmist Drive
Rancho Palos Verdes, California 90274

6. C3 Academic Group, Code CC 2
Naval Postgraduate School
Monterey, California 93943

7. Capt Samuel M. Liberto 2
c/o Capt. Luis M. Tirado, Jr.
5024 Rain Drop Circle South
Colorado Springs, Colorado 80917

106

